The problem presents two functions, $g(x)$ and $f(x)$. $g(x) = -(x-1)^2 + 1 - \ln(x-1)$ $f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}$ Part A asks to study the variations of $g(x)$ and calculate $g(2)$, then to prove $g(x) \ge 0$ on the interval $]1, 2]$ and $g(x) \le 0$ on $[2, +\infty[$. Part B deals with $f(x)$: determine the domain of definition $D_f$ and its limits at the boundaries, determine $f'(x)$ and verify that $f'(x) = \frac{g(x)}{(x-1)^2}$, draw the variation table of $f$, show that the line $y = -x + 3$ is an oblique asymptote, find the intersection of $C_f$ with the asymptote, and finally, with $h$ the restriction of $f$ on $I = ]2, +\infty[$, show that $h$ is bijective and calculate $h(3)$ and deduce $(h^{-1})'(\frac{\ln 2}{2})$.

AnalysisFunctionsLimitsDerivativesAsymptotesBijective FunctionsInverse Functions
2025/3/8

1. Problem Description

The problem presents two functions, g(x)g(x) and f(x)f(x).
g(x)=(x1)2+1ln(x1)g(x) = -(x-1)^2 + 1 - \ln(x-1)
f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}
Part A asks to study the variations of g(x)g(x) and calculate g(2)g(2), then to prove g(x)0g(x) \ge 0 on the interval ]1,2]]1, 2] and g(x)0g(x) \le 0 on [2,+[[2, +\infty[.
Part B deals with f(x)f(x): determine the domain of definition DfD_f and its limits at the boundaries, determine f(x)f'(x) and verify that f(x)=g(x)(x1)2f'(x) = \frac{g(x)}{(x-1)^2}, draw the variation table of ff, show that the line y=x+3y = -x + 3 is an oblique asymptote, find the intersection of CfC_f with the asymptote, and finally, with hh the restriction of ff on I=]2,+[I = ]2, +\infty[, show that hh is bijective and calculate h(3)h(3) and deduce (h1)(ln22)(h^{-1})'(\frac{\ln 2}{2}).

2. Solution Steps

Part B:
1) Determine DfD_f and limits at the bounds of DfD_f.
The function f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1} is defined if x1>0x-1 > 0 and x10x-1 \ne 0.
Thus, x>1x > 1.
Df=]1,+[D_f = ]1, +\infty[
limx1+f(x)=limx1+(x+3+ln(x1)x1)\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (-x + 3 + \frac{\ln(x-1)}{x-1})
Let u=x1u = x-1, then as x1+x \to 1^+, u0+u \to 0^+.
limx1+f(x)=limu0+((u+1)+3+lnuu)=limu0+(u+2+lnuu)=\lim_{x \to 1^+} f(x) = \lim_{u \to 0^+} (-(u+1) + 3 + \frac{\ln u}{u}) = \lim_{u \to 0^+} (-u + 2 + \frac{\ln u}{u}) = -\infty since limu0+lnuu=\lim_{u \to 0^+} \frac{\ln u}{u} = -\infty.
limx+f(x)=limx+(x+3+ln(x1)x1)\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x + 3 + \frac{\ln(x-1)}{x-1})
Since limx+ln(x1)x1=0\lim_{x \to +\infty} \frac{\ln(x-1)}{x-1} = 0,
limx+f(x)=\lim_{x \to +\infty} f(x) = -\infty
2) Determine f(x)f'(x) and verify that f(x)=g(x)(x1)2f'(x) = \frac{g(x)}{(x-1)^2}.
f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}
f(x)=1+1x1(x1)ln(x1)(1)(x1)2=1+1ln(x1)(x1)2f'(x) = -1 + \frac{\frac{1}{x-1}(x-1) - \ln(x-1)(1)}{(x-1)^2} = -1 + \frac{1 - \ln(x-1)}{(x-1)^2}
f(x)=(x1)2+1ln(x1)(x1)2=g(x)(x1)2f'(x) = \frac{-(x-1)^2 + 1 - \ln(x-1)}{(x-1)^2} = \frac{g(x)}{(x-1)^2}
5) b- Calculate h(3)h(3) and deduce (h1)(ln22)(h^{-1})'(\frac{\ln 2}{2}).
h(x)=f(x)h(x) = f(x) on ]2,+[]2, +\infty[
h(3)=f(3)=3+3+ln(31)31=ln22h(3) = f(3) = -3 + 3 + \frac{\ln(3-1)}{3-1} = \frac{\ln 2}{2}
Since h(3)=ln22h(3) = \frac{\ln 2}{2}, then h1(ln22)=3h^{-1}(\frac{\ln 2}{2}) = 3.
We know that (h1)(y)=1h(h1(y))(h^{-1})'(y) = \frac{1}{h'(h^{-1}(y))}
So (h1)(ln22)=1h(h1(ln22))=1h(3)(h^{-1})'(\frac{\ln 2}{2}) = \frac{1}{h'(h^{-1}(\frac{\ln 2}{2}))} = \frac{1}{h'(3)}
h(3)=f(3)=g(3)(31)2=g(3)4h'(3) = f'(3) = \frac{g(3)}{(3-1)^2} = \frac{g(3)}{4}
g(3)=(31)2+1ln(31)=4+1ln2=3ln2g(3) = -(3-1)^2 + 1 - \ln(3-1) = -4 + 1 - \ln 2 = -3 - \ln 2
h(3)=3ln24h'(3) = \frac{-3 - \ln 2}{4}
(h1)(ln22)=13ln24=43ln2=43+ln2(h^{-1})'(\frac{\ln 2}{2}) = \frac{1}{\frac{-3 - \ln 2}{4}} = \frac{4}{-3 - \ln 2} = -\frac{4}{3 + \ln 2}

3. Final Answer

h(3)=ln22h(3) = \frac{\ln 2}{2}
(h1)(ln22)=43+ln2(h^{-1})'(\frac{\ln 2}{2}) = -\frac{4}{3 + \ln 2}

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4