The problem presents two functions, $g(x)$ and $f(x)$. $g(x) = -(x-1)^2 + 1 - \ln(x-1)$ $f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}$ Part A asks to study the variations of $g(x)$ and calculate $g(2)$, then to prove $g(x) \ge 0$ on the interval $]1, 2]$ and $g(x) \le 0$ on $[2, +\infty[$. Part B deals with $f(x)$: determine the domain of definition $D_f$ and its limits at the boundaries, determine $f'(x)$ and verify that $f'(x) = \frac{g(x)}{(x-1)^2}$, draw the variation table of $f$, show that the line $y = -x + 3$ is an oblique asymptote, find the intersection of $C_f$ with the asymptote, and finally, with $h$ the restriction of $f$ on $I = ]2, +\infty[$, show that $h$ is bijective and calculate $h(3)$ and deduce $(h^{-1})'(\frac{\ln 2}{2})$.

AnalysisFunctionsLimitsDerivativesAsymptotesBijective FunctionsInverse Functions
2025/3/8

1. Problem Description

The problem presents two functions, g(x)g(x) and f(x)f(x).
g(x)=(x1)2+1ln(x1)g(x) = -(x-1)^2 + 1 - \ln(x-1)
f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}
Part A asks to study the variations of g(x)g(x) and calculate g(2)g(2), then to prove g(x)0g(x) \ge 0 on the interval ]1,2]]1, 2] and g(x)0g(x) \le 0 on [2,+[[2, +\infty[.
Part B deals with f(x)f(x): determine the domain of definition DfD_f and its limits at the boundaries, determine f(x)f'(x) and verify that f(x)=g(x)(x1)2f'(x) = \frac{g(x)}{(x-1)^2}, draw the variation table of ff, show that the line y=x+3y = -x + 3 is an oblique asymptote, find the intersection of CfC_f with the asymptote, and finally, with hh the restriction of ff on I=]2,+[I = ]2, +\infty[, show that hh is bijective and calculate h(3)h(3) and deduce (h1)(ln22)(h^{-1})'(\frac{\ln 2}{2}).

2. Solution Steps

Part B:
1) Determine DfD_f and limits at the bounds of DfD_f.
The function f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1} is defined if x1>0x-1 > 0 and x10x-1 \ne 0.
Thus, x>1x > 1.
Df=]1,+[D_f = ]1, +\infty[
limx1+f(x)=limx1+(x+3+ln(x1)x1)\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (-x + 3 + \frac{\ln(x-1)}{x-1})
Let u=x1u = x-1, then as x1+x \to 1^+, u0+u \to 0^+.
limx1+f(x)=limu0+((u+1)+3+lnuu)=limu0+(u+2+lnuu)=\lim_{x \to 1^+} f(x) = \lim_{u \to 0^+} (-(u+1) + 3 + \frac{\ln u}{u}) = \lim_{u \to 0^+} (-u + 2 + \frac{\ln u}{u}) = -\infty since limu0+lnuu=\lim_{u \to 0^+} \frac{\ln u}{u} = -\infty.
limx+f(x)=limx+(x+3+ln(x1)x1)\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x + 3 + \frac{\ln(x-1)}{x-1})
Since limx+ln(x1)x1=0\lim_{x \to +\infty} \frac{\ln(x-1)}{x-1} = 0,
limx+f(x)=\lim_{x \to +\infty} f(x) = -\infty
2) Determine f(x)f'(x) and verify that f(x)=g(x)(x1)2f'(x) = \frac{g(x)}{(x-1)^2}.
f(x)=x+3+ln(x1)x1f(x) = -x + 3 + \frac{\ln(x-1)}{x-1}
f(x)=1+1x1(x1)ln(x1)(1)(x1)2=1+1ln(x1)(x1)2f'(x) = -1 + \frac{\frac{1}{x-1}(x-1) - \ln(x-1)(1)}{(x-1)^2} = -1 + \frac{1 - \ln(x-1)}{(x-1)^2}
f(x)=(x1)2+1ln(x1)(x1)2=g(x)(x1)2f'(x) = \frac{-(x-1)^2 + 1 - \ln(x-1)}{(x-1)^2} = \frac{g(x)}{(x-1)^2}
5) b- Calculate h(3)h(3) and deduce (h1)(ln22)(h^{-1})'(\frac{\ln 2}{2}).
h(x)=f(x)h(x) = f(x) on ]2,+[]2, +\infty[
h(3)=f(3)=3+3+ln(31)31=ln22h(3) = f(3) = -3 + 3 + \frac{\ln(3-1)}{3-1} = \frac{\ln 2}{2}
Since h(3)=ln22h(3) = \frac{\ln 2}{2}, then h1(ln22)=3h^{-1}(\frac{\ln 2}{2}) = 3.
We know that (h1)(y)=1h(h1(y))(h^{-1})'(y) = \frac{1}{h'(h^{-1}(y))}
So (h1)(ln22)=1h(h1(ln22))=1h(3)(h^{-1})'(\frac{\ln 2}{2}) = \frac{1}{h'(h^{-1}(\frac{\ln 2}{2}))} = \frac{1}{h'(3)}
h(3)=f(3)=g(3)(31)2=g(3)4h'(3) = f'(3) = \frac{g(3)}{(3-1)^2} = \frac{g(3)}{4}
g(3)=(31)2+1ln(31)=4+1ln2=3ln2g(3) = -(3-1)^2 + 1 - \ln(3-1) = -4 + 1 - \ln 2 = -3 - \ln 2
h(3)=3ln24h'(3) = \frac{-3 - \ln 2}{4}
(h1)(ln22)=13ln24=43ln2=43+ln2(h^{-1})'(\frac{\ln 2}{2}) = \frac{1}{\frac{-3 - \ln 2}{4}} = \frac{4}{-3 - \ln 2} = -\frac{4}{3 + \ln 2}

3. Final Answer

h(3)=ln22h(3) = \frac{\ln 2}{2}
(h1)(ln22)=43+ln2(h^{-1})'(\frac{\ln 2}{2}) = -\frac{4}{3 + \ln 2}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1