The problem asks to determine the average rate of change of the function $f(x) = 4(x+2)^2 + 1$ on the interval $-1 < x < 3$.

AnalysisAverage Rate of ChangeFunctionsCalculus
2025/3/26

1. Problem Description

The problem asks to determine the average rate of change of the function f(x)=4(x+2)2+1f(x) = 4(x+2)^2 + 1 on the interval 1<x<3-1 < x < 3.

2. Solution Steps

The average rate of change of a function f(x)f(x) over an interval [a,b][a, b] is given by the formula:
f(b)f(a)ba\frac{f(b) - f(a)}{b - a}.
In this problem, we have f(x)=4(x+2)2+1f(x) = 4(x+2)^2 + 1, a=1a = -1, and b=3b = 3.
First, we evaluate f(a)=f(1)f(a) = f(-1):
f(1)=4(1+2)2+1=4(1)2+1=4(1)+1=4+1=5f(-1) = 4(-1+2)^2 + 1 = 4(1)^2 + 1 = 4(1) + 1 = 4 + 1 = 5.
Next, we evaluate f(b)=f(3)f(b) = f(3):
f(3)=4(3+2)2+1=4(5)2+1=4(25)+1=100+1=101f(3) = 4(3+2)^2 + 1 = 4(5)^2 + 1 = 4(25) + 1 = 100 + 1 = 101.
Now, we compute the average rate of change:
f(3)f(1)3(1)=10153(1)=964=24\frac{f(3) - f(-1)}{3 - (-1)} = \frac{101 - 5}{3 - (-1)} = \frac{96}{4} = 24.

3. Final Answer

The average rate of change of the function f(x)=4(x+2)2+1f(x) = 4(x+2)^2 + 1 on the interval 1<x<3-1 < x < 3 is 24.

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4