$(\alpha - \beta)^2$ を展開しなさい。

代数学展開二乗代数
2025/6/3

1. 問題の内容

(αβ)2(\alpha - \beta)^2 を展開しなさい。

2. 解き方の手順

(αβ)2(\alpha - \beta)^2(αβ)(αβ)(\alpha - \beta)(\alpha - \beta) と書き換えることができます。
分配法則を使って展開します。
(αβ)(αβ)=α(αβ)β(αβ)(\alpha - \beta)(\alpha - \beta) = \alpha(\alpha - \beta) - \beta(\alpha - \beta)
=α2αββα+β2= \alpha^2 - \alpha\beta - \beta\alpha + \beta^2
=α22αβ+β2= \alpha^2 - 2\alpha\beta + \beta^2

3. 最終的な答え

α22αβ+β2\alpha^2 - 2\alpha\beta + \beta^2

「代数学」の関連問題

不等式 $2(x+1) > 5(x-2)$ を解き、$x$ の範囲を求めます。

不等式一次不等式不等式の解法
2025/6/6

与えられた6つの2次式を平方完成させる問題です。

二次式平方完成
2025/6/6

与えられた一次不等式 $6x - 5 < 2x + 3$ を解き、$x$の範囲を求める問題です。

一次不等式不等式
2025/6/6

複素数 $z$ に関する方程式 $z^4 = -8 - 8\sqrt{3}i$ を解く問題です。

複素数複素平面ド・モアブルの定理方程式
2025/6/6

関数 $y = -2x + 3$ の $-1 \le x \le 2$ におけるグラフを描き、値域を求め、最大値と最小値を求める問題です。

一次関数グラフ値域最大値最小値
2025/6/6

行列 $A = \begin{pmatrix} 7 & -4 \\ 5 & -2 \end{pmatrix}$ が与えられたとき、以下の問題を解く。 (1) $A \begin{pmatrix} 1 ...

行列線形代数固有値固有ベクトル行列の累乗
2025/6/6

$n$ を自然数とするとき、行列 $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ と $A^n \begin{pmatrix} 0 \\ 1 \end{pmatr...

行列行列の累乗線形代数
2025/6/6

与えられた行列 $A = \begin{pmatrix} 7 & -4 \\ 5 & -2 \end{pmatrix}$ に対して、以下の問題を解く。 (1) $A \begin{pmatrix} 1...

行列固有値固有ベクトル行列の累乗線形代数
2025/6/6

一次関数 $f(x) = ax + b$ が与えられており、以下の2つの条件を満たす定数 $a$ と $b$ の値を求める問題です。 (1) $f(2) = 8$ , $f(-1) = -4$ (2)...

一次関数連立方程式関数定数
2025/6/6

2x2行列X, Yについて、以下の連立方程式を満たすXとYを求めます。 $X + 2Y = \begin{pmatrix} 5 & 0 \\ -1 & 5 \end{pmatrix}$ $3X - Y...

行列連立方程式線形代数
2025/6/6