与えられた6つの2次式を平方完成させる問題です。代数学二次式平方完成2025/6/61. 問題の内容与えられた6つの2次式を平方完成させる問題です。2. 解き方の手順平方完成の手順は以下の通りです。(1) x2+8xx^2 + 8xx2+8xx2+8x=(x+4)2−42=(x+4)2−16x^2 + 8x = (x + 4)^2 - 4^2 = (x+4)^2 - 16x2+8x=(x+4)2−42=(x+4)2−16(2) x2−6x+8x^2 - 6x + 8x2−6x+8x2−6x+8=(x−3)2−32+8=(x−3)2−9+8=(x−3)2−1x^2 - 6x + 8 = (x - 3)^2 - 3^2 + 8 = (x-3)^2 - 9 + 8 = (x-3)^2 - 1x2−6x+8=(x−3)2−32+8=(x−3)2−9+8=(x−3)2−1(3) 2x2−8x+52x^2 - 8x + 52x2−8x+52x2−8x+5=2(x2−4x)+5=2((x−2)2−22)+5=2(x−2)2−8+5=2(x−2)2−32x^2 - 8x + 5 = 2(x^2 - 4x) + 5 = 2((x-2)^2 - 2^2) + 5 = 2(x-2)^2 - 8 + 5 = 2(x-2)^2 - 32x2−8x+5=2(x2−4x)+5=2((x−2)2−22)+5=2(x−2)2−8+5=2(x−2)2−3(4) −3x2−6x−2-3x^2 - 6x - 2−3x2−6x−2−3x2−6x−2=−3(x2+2x)−2=−3((x+1)2−12)−2=−3(x+1)2+3−2=−3(x+1)2+1-3x^2 - 6x - 2 = -3(x^2 + 2x) - 2 = -3((x+1)^2 - 1^2) - 2 = -3(x+1)^2 + 3 - 2 = -3(x+1)^2 + 1−3x2−6x−2=−3(x2+2x)−2=−3((x+1)2−12)−2=−3(x+1)2+3−2=−3(x+1)2+1(5) x2+x−2x^2 + x - 2x2+x−2x2+x−2=(x+12)2−(12)2−2=(x+12)2−14−2=(x+12)2−94x^2 + x - 2 = (x + \frac{1}{2})^2 - (\frac{1}{2})^2 - 2 = (x + \frac{1}{2})^2 - \frac{1}{4} - 2 = (x + \frac{1}{2})^2 - \frac{9}{4}x2+x−2=(x+21)2−(21)2−2=(x+21)2−41−2=(x+21)2−49(6) −2x2+6x+4-2x^2 + 6x + 4−2x2+6x+4−2x2+6x+4=−2(x2−3x)+4=−2((x−32)2−(32)2)+4=−2(x−32)2+2(94)+4=−2(x−32)2+92+82=−2(x−32)2+172-2x^2 + 6x + 4 = -2(x^2 - 3x) + 4 = -2((x - \frac{3}{2})^2 - (\frac{3}{2})^2) + 4 = -2(x - \frac{3}{2})^2 + 2(\frac{9}{4}) + 4 = -2(x - \frac{3}{2})^2 + \frac{9}{2} + \frac{8}{2} = -2(x - \frac{3}{2})^2 + \frac{17}{2}−2x2+6x+4=−2(x2−3x)+4=−2((x−23)2−(23)2)+4=−2(x−23)2+2(49)+4=−2(x−23)2+29+28=−2(x−23)2+2173. 最終的な答え(1) (x+4)2−16(x+4)^2 - 16(x+4)2−16(2) (x−3)2−1(x-3)^2 - 1(x−3)2−1(3) 2(x−2)2−32(x-2)^2 - 32(x−2)2−3(4) −3(x+1)2+1-3(x+1)^2 + 1−3(x+1)2+1(5) (x+12)2−94(x + \frac{1}{2})^2 - \frac{9}{4}(x+21)2−49(6) −2(x−32)2+172-2(x - \frac{3}{2})^2 + \frac{17}{2}−2(x−23)2+217