姉と妹がおはじきを合計57個持っています。姉のおはじきの個数は、妹のおはじきの個数の3倍より9個多いです。姉と妹それぞれのおはじきの個数を求めます。

代数学一次方程式文章問題連立方程式
2025/6/3

1. 問題の内容

姉と妹がおはじきを合計57個持っています。姉のおはじきの個数は、妹のおはじきの個数の3倍より9個多いです。姉と妹それぞれのおはじきの個数を求めます。

2. 解き方の手順

妹のおはじきの個数を xx とします。
姉のおはじきの個数は 3x+93x + 9 と表されます。
姉と妹のおはじきの合計が57個なので、次の方程式が成り立ちます。
x+(3x+9)=57x + (3x + 9) = 57
この方程式を解きます。
4x+9=574x + 9 = 57
4x=5794x = 57 - 9
4x=484x = 48
x=484x = \frac{48}{4}
x=12x = 12
妹のおはじきの個数は12個です。
姉のおはじきの個数は 3x+93x + 9 なので、3×12+9=36+9=453 \times 12 + 9 = 36 + 9 = 45 個です。

3. 最終的な答え

姉のおはじきの個数:45個
妹のおはじきの個数:12個

「代数学」の関連問題

$\sqrt{4 + 2\sqrt{3}}$ を簡単にしてください。

二重根号根号の計算平方根
2025/6/4

与えられた10個の式を因数分解する問題です。

因数分解多項式
2025/6/4

初項から第$n$項までの和$S_n$が、$S_n = n^2 + 1$で表される数列$\{a_n\}$の一般項を求める。

数列一般項漸化式
2025/6/4

与えられた方程式 $5x - 10y = 15$ を $y$ について解く問題です。つまり、$y$を$x$の式で表します。

一次方程式式の変形連立方程式
2025/6/4

多項式 $A = x^3 - 3 - 2x$ と $B = -5x + 2x^2 - 3x^3 - 1$ が与えられています。$A+B$ と $A-2B$ を計算します。

多項式式の計算展開
2025/6/4

2次関数 $y = 2x^2 + x + k$ のグラフと $x$ 軸の共有点の個数が、定数 $k$ の値によってどのように変化するかを求める問題です。

二次関数判別式共有点不等式
2025/6/4

数列 $1, 1+2, 1+2+3, \dots, 1+2+3+\dots+n, \dots$ の第 $k$ 項を $k$ の式で表し、初項から第 $n$ 項までの和 $S_n$ を求めよ。

数列等差数列シグマ公式
2025/6/4

$\sum_{k=1}^{n} (k^3 - k)$ を計算します。

級数シグマ数列因数分解代数計算
2025/6/4

与えられた多項式 $2a^2x + a^2x^2 - 3x^2 - 5x + 1$ を、$x$ について降べきの順に整理する。

多項式降べきの順整理
2025/6/4

お小遣いのルールが次のように定められている。1日目は1円、2日目は前日の2倍の2円、3日目は前日の2倍の4円、4日目は前日の2倍の8円、と続く。このとき、21日目のお小遣いがいくらになるか求める。

等比数列指数計算
2025/6/4