3つの対数に関する式をそれぞれ簡単にします。代数学対数指数2025/6/3## 357 次の式を簡単にせよ。**(1) log332+log954−log36\log_3 \sqrt{32} + \log_9 54 - \log_{\sqrt{3}} 6log332+log954−log36****(2) (log49−log163)(log916−log38)(\log_4 9 - \log_{16} 3)(\log_9 16 - \log_3 8)(log49−log163)(log916−log38)****(3) 16log2316^{\log_2 3}16log23**1. 問題の内容3つの対数に関する式をそれぞれ簡単にします。2. 解き方の手順**(1) log332+log954−log36\log_3 \sqrt{32} + \log_9 54 - \log_{\sqrt{3}} 6log332+log954−log36**まず、各項を底を3とする対数に変換します。32=(25)1/2=25/2\sqrt{32} = (2^5)^{1/2} = 2^{5/2}32=(25)1/2=25/2 なので、 log332=log325/2=52log32\log_3 \sqrt{32} = \log_3 2^{5/2} = \frac{5}{2}\log_3 2log332=log325/2=25log32log954=log354log39=log3(2⋅33)2=log32+32=12log32+32\log_9 54 = \frac{\log_3 54}{\log_3 9} = \frac{\log_3 (2 \cdot 3^3)}{2} = \frac{\log_3 2 + 3}{2} = \frac{1}{2}\log_3 2 + \frac{3}{2}log954=log39log354=2log3(2⋅33)=2log32+3=21log32+23log36=log36log33=log3(2⋅3)1/2=2(log32+1)=2log32+2\log_{\sqrt{3}} 6 = \frac{\log_3 6}{\log_3 \sqrt{3}} = \frac{\log_3 (2 \cdot 3)}{1/2} = 2(\log_3 2 + 1) = 2\log_3 2 + 2log36=log33log36=1/2log3(2⋅3)=2(log32+1)=2log32+2よって、log332+log954−log36=52log32+(12log32+32)−(2log32+2)=(52+12−2)log32+(32−2)=log32−12\log_3 \sqrt{32} + \log_9 54 - \log_{\sqrt{3}} 6 = \frac{5}{2}\log_3 2 + (\frac{1}{2}\log_3 2 + \frac{3}{2}) - (2\log_3 2 + 2) = (\frac{5}{2} + \frac{1}{2} - 2)\log_3 2 + (\frac{3}{2} - 2) = \log_3 2 - \frac{1}{2}log332+log954−log36=25log32+(21log32+23)−(2log32+2)=(25+21−2)log32+(23−2)=log32−21=log32−log33=log323=log3233= \log_3 2 - \log_3 \sqrt{3} = \log_3 \frac{2}{\sqrt{3}} = \log_3 \frac{2\sqrt{3}}{3}=log32−log33=log332=log3323**(2) (log49−log163)(log916−log38)(\log_4 9 - \log_{16} 3)(\log_9 16 - \log_3 8)(log49−log163)(log916−log38)**各項を底を2とする対数に変換します。log49=log29log24=2log232=log23\log_4 9 = \frac{\log_2 9}{\log_2 4} = \frac{2\log_2 3}{2} = \log_2 3log49=log24log29=22log23=log23log163=log23log216=log234=14log23\log_{16} 3 = \frac{\log_2 3}{\log_2 16} = \frac{\log_2 3}{4} = \frac{1}{4} \log_2 3log163=log216log23=4log23=41log23log916=log216log29=42log23=2log23\log_9 16 = \frac{\log_2 16}{\log_2 9} = \frac{4}{2\log_2 3} = \frac{2}{\log_2 3}log916=log29log216=2log234=log232log38=log28log23=3log23\log_3 8 = \frac{\log_2 8}{\log_2 3} = \frac{3}{\log_2 3}log38=log23log28=log233よって、(log49−log163)(log916−log38)=(log23−14log23)(2log23−3log23)=(34log23)(−1log23)=−34(\log_4 9 - \log_{16} 3)(\log_9 16 - \log_3 8) = (\log_2 3 - \frac{1}{4}\log_2 3)(\frac{2}{\log_2 3} - \frac{3}{\log_2 3}) = (\frac{3}{4}\log_2 3)(-\frac{1}{\log_2 3}) = -\frac{3}{4}(log49−log163)(log916−log38)=(log23−41log23)(log232−log233)=(43log23)(−log231)=−43**(3) 16log2316^{\log_2 3}16log23**16log23=(24)log23=24log23=2log234=2log281=8116^{\log_2 3} = (2^4)^{\log_2 3} = 2^{4\log_2 3} = 2^{\log_2 3^4} = 2^{\log_2 81} = 8116log23=(24)log23=24log23=2log234=2log281=813. 最終的な答え**(1) log3233\log_3 \frac{2\sqrt{3}}{3}log3323****(2) −34-\frac{3}{4}−43****(3) 818181**