与えられた12個の極限値を求める問題です。解析学極限関数の極限三角関数無限大2025/6/31. 問題の内容与えられた12個の極限値を求める問題です。2. 解き方の手順(1) limx→2x3−8x2+x−6\lim_{x \to 2} \frac{x^3 - 8}{x^2 + x - 6}limx→2x2+x−6x3−8x3−8=(x−2)(x2+2x+4)x^3 - 8 = (x - 2)(x^2 + 2x + 4)x3−8=(x−2)(x2+2x+4)x2+x−6=(x−2)(x+3)x^2 + x - 6 = (x - 2)(x + 3)x2+x−6=(x−2)(x+3)limx→2(x−2)(x2+2x+4)(x−2)(x+3)=limx→2x2+2x+4x+3=22+2⋅2+42+3=125\lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x - 2)(x + 3)} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{x + 3} = \frac{2^2 + 2 \cdot 2 + 4}{2 + 3} = \frac{12}{5}limx→2(x−2)(x+3)(x−2)(x2+2x+4)=limx→2x+3x2+2x+4=2+322+2⋅2+4=512(2) limx→01x(1−4(x+2)2)\lim_{x \to 0} \frac{1}{x} \left( 1 - \frac{4}{(x+2)^2} \right)limx→0x1(1−(x+2)24)limx→01x((x+2)2−4(x+2)2)=limx→0x2+4x+4−4x(x+2)2=limx→0x2+4xx(x+2)2=limx→0x(x+4)x(x+2)2=limx→0x+4(x+2)2=0+4(0+2)2=44=1\lim_{x \to 0} \frac{1}{x} \left( \frac{(x+2)^2 - 4}{(x+2)^2} \right) = \lim_{x \to 0} \frac{x^2 + 4x + 4 - 4}{x(x+2)^2} = \lim_{x \to 0} \frac{x^2 + 4x}{x(x+2)^2} = \lim_{x \to 0} \frac{x(x+4)}{x(x+2)^2} = \lim_{x \to 0} \frac{x+4}{(x+2)^2} = \frac{0+4}{(0+2)^2} = \frac{4}{4} = 1limx→0x1((x+2)2(x+2)2−4)=limx→0x(x+2)2x2+4x+4−4=limx→0x(x+2)2x2+4x=limx→0x(x+2)2x(x+4)=limx→0(x+2)2x+4=(0+2)20+4=44=1(3) limx→0xx+16−4\lim_{x \to 0} \frac{x}{\sqrt{x+16} - 4}limx→0x+16−4xlimx→0x(x+16+4)(x+16−4)(x+16+4)=limx→0x(x+16+4)x+16−16=limx→0x(x+16+4)x=limx→0x+16+4=0+16+4=4+4=8\lim_{x \to 0} \frac{x(\sqrt{x+16} + 4)}{(\sqrt{x+16} - 4)(\sqrt{x+16} + 4)} = \lim_{x \to 0} \frac{x(\sqrt{x+16} + 4)}{x+16 - 16} = \lim_{x \to 0} \frac{x(\sqrt{x+16} + 4)}{x} = \lim_{x \to 0} \sqrt{x+16} + 4 = \sqrt{0+16} + 4 = 4 + 4 = 8limx→0(x+16−4)(x+16+4)x(x+16+4)=limx→0x+16−16x(x+16+4)=limx→0xx(x+16+4)=limx→0x+16+4=0+16+4=4+4=8(4) limx→∞2x+1x+3\lim_{x \to \infty} \frac{2x+1}{x+3}limx→∞x+32x+1limx→∞2+1x1+3x=2+01+0=2\lim_{x \to \infty} \frac{2 + \frac{1}{x}}{1 + \frac{3}{x}} = \frac{2 + 0}{1 + 0} = 2limx→∞1+x32+x1=1+02+0=2(5) limx→∞3x2−5x−2x2−3x+2\lim_{x \to \infty} \frac{3x^2 - 5x - 2}{x^2 - 3x + 2}limx→∞x2−3x+23x2−5x−2limx→∞3−5x−2x21−3x+2x2=3−0−01−0+0=3\lim_{x \to \infty} \frac{3 - \frac{5}{x} - \frac{2}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} = \frac{3 - 0 - 0}{1 - 0 + 0} = 3limx→∞1−x3+x223−x5−x22=1−0+03−0−0=3(6) limx→∞2x3−5x+7x2+2x−1\lim_{x \to \infty} \frac{2x^3 - 5x + 7}{x^2 + 2x - 1}limx→∞x2+2x−12x3−5x+7limx→∞2x−5x+7x21+2x−1x2=∞\lim_{x \to \infty} \frac{2x - \frac{5}{x} + \frac{7}{x^2}}{1 + \frac{2}{x} - \frac{1}{x^2}} = \inftylimx→∞1+x2−x212x−x5+x27=∞(7) limx→∞(7x−2⋅3x)\lim_{x \to \infty} (7^x - 2 \cdot 3^x)limx→∞(7x−2⋅3x)これは問題が不明確なため、保留とします。(8) limx→∞log39x+2x+3\lim_{x \to \infty} \log_3 \frac{9x+2}{x+3}limx→∞log3x+39x+2limx→∞log39+2x1+3x=log39+01+0=log39=2\lim_{x \to \infty} \log_3 \frac{9 + \frac{2}{x}}{1 + \frac{3}{x}} = \log_3 \frac{9+0}{1+0} = \log_3 9 = 2limx→∞log31+x39+x2=log31+09+0=log39=2(9) limx→0sin5xx\lim_{x \to 0} \frac{\sin 5x}{x}limx→0xsin5xlimx→0sin5x5x⋅5=1⋅5=5\lim_{x \to 0} \frac{\sin 5x}{5x} \cdot 5 = 1 \cdot 5 = 5limx→05xsin5x⋅5=1⋅5=5(10) limx→0sin2xsin7x\lim_{x \to 0} \frac{\sin 2x}{\sin 7x}limx→0sin7xsin2xlimx→0sin2x2x⋅7xsin7x⋅2x7x=1⋅1⋅27=27\lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \frac{7x}{\sin 7x} \cdot \frac{2x}{7x} = 1 \cdot 1 \cdot \frac{2}{7} = \frac{2}{7}limx→02xsin2x⋅sin7x7x⋅7x2x=1⋅1⋅72=72(11) limx→0sin2x1−cosx\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x}limx→01−cosxsin2xlimx→0sin2x1−cosx=limx→0sin2x1−cosx⋅1+cosx1+cosx=limx→0sin2x(1+cosx)1−cos2x=limx→0sin2x(1+cosx)sin2x=limx→01+cosx=1+cos0=1+1=2\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x} = \lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{\sin^2 x (1 + \cos x)}{1 - \cos^2 x} = \lim_{x \to 0} \frac{\sin^2 x (1 + \cos x)}{\sin^2 x} = \lim_{x \to 0} 1 + \cos x = 1 + \cos 0 = 1 + 1 = 2limx→01−cosxsin2x=limx→01−cosxsin2x⋅1+cosx1+cosx=limx→01−cos2xsin2x(1+cosx)=limx→0sin2xsin2x(1+cosx)=limx→01+cosx=1+cos0=1+1=2(12) limx→0sinx−tan2xx\lim_{x \to 0} \frac{\sin x - \tan 2x}{x}limx→0xsinx−tan2xlimx→0sinxx−tan2xx=limx→0sinxx−sin2xxcos2x=limx→0sinxx−sin2x2x⋅2cos2x=1−1⋅21=1−2=−1\lim_{x \to 0} \frac{\sin x}{x} - \frac{\tan 2x}{x} = \lim_{x \to 0} \frac{\sin x}{x} - \frac{\sin 2x}{x \cos 2x} = \lim_{x \to 0} \frac{\sin x}{x} - \frac{\sin 2x}{2x} \cdot \frac{2}{\cos 2x} = 1 - 1 \cdot \frac{2}{1} = 1 - 2 = -1limx→0xsinx−xtan2x=limx→0xsinx−xcos2xsin2x=limx→0xsinx−2xsin2x⋅cos2x2=1−1⋅12=1−2=−13. 最終的な答え(1) 125\frac{12}{5}512(2) 111(3) 888(4) 222(5) 333(6) ∞\infty∞(7) 回答不能(8) 222(9) 555(10) 27\frac{2}{7}72(11) 222(12) −1-1−1