与えられた9つの2次式を平方完成させる問題です。 (1) $x^2 + 6x$ (2) $x^2 - 4x + 9$ (3) $2x^2 + 8x + 1$ (4) $-x^2 + 2x + 5$ (5) $-3x^2 - 18x - 20$ (6) $x^2 - x + 3$ (7) $-x^2 - 7x - 12$ (8) $3x^2 + 9x + 18$ (9) $-2x^2 + 10x$

代数学二次式平方完成
2025/6/3

1. 問題の内容

与えられた9つの2次式を平方完成させる問題です。
(1) x2+6xx^2 + 6x
(2) x24x+9x^2 - 4x + 9
(3) 2x2+8x+12x^2 + 8x + 1
(4) x2+2x+5-x^2 + 2x + 5
(5) 3x218x20-3x^2 - 18x - 20
(6) x2x+3x^2 - x + 3
(7) x27x12-x^2 - 7x - 12
(8) 3x2+9x+183x^2 + 9x + 18
(9) 2x2+10x-2x^2 + 10x

2. 解き方の手順

平方完成の一般的な手順は以下の通りです。

1. $x^2$の係数で式全体を括る。

2. $x$の係数の半分の二乗を足して引く。

3. 平方完成の形にする。

4. 定数項を整理する。

(1) x2+6xx^2 + 6x
x2+6x=(x+3)232=(x+3)29x^2 + 6x = (x + 3)^2 - 3^2 = (x + 3)^2 - 9
(2) x24x+9x^2 - 4x + 9
x24x+9=(x2)222+9=(x2)24+9=(x2)2+5x^2 - 4x + 9 = (x - 2)^2 - 2^2 + 9 = (x - 2)^2 - 4 + 9 = (x - 2)^2 + 5
(3) 2x2+8x+12x^2 + 8x + 1
2x2+8x+1=2(x2+4x)+1=2((x+2)222)+1=2(x+2)28+1=2(x+2)272x^2 + 8x + 1 = 2(x^2 + 4x) + 1 = 2((x + 2)^2 - 2^2) + 1 = 2(x + 2)^2 - 8 + 1 = 2(x + 2)^2 - 7
(4) x2+2x+5-x^2 + 2x + 5
x2+2x+5=(x22x)+5=((x1)212)+5=(x1)2+1+5=(x1)2+6-x^2 + 2x + 5 = -(x^2 - 2x) + 5 = -((x - 1)^2 - 1^2) + 5 = -(x - 1)^2 + 1 + 5 = -(x - 1)^2 + 6
(5) 3x218x20-3x^2 - 18x - 20
3x218x20=3(x2+6x)20=3((x+3)232)20=3(x+3)2+2720=3(x+3)2+7-3x^2 - 18x - 20 = -3(x^2 + 6x) - 20 = -3((x + 3)^2 - 3^2) - 20 = -3(x + 3)^2 + 27 - 20 = -3(x + 3)^2 + 7
(6) x2x+3x^2 - x + 3
x2x+3=(x12)2(12)2+3=(x12)214+3=(x12)2+114x^2 - x + 3 = (x - \frac{1}{2})^2 - (\frac{1}{2})^2 + 3 = (x - \frac{1}{2})^2 - \frac{1}{4} + 3 = (x - \frac{1}{2})^2 + \frac{11}{4}
(7) x27x12-x^2 - 7x - 12
x27x12=(x2+7x)12=((x+72)2(72)2)12=(x+72)2+49412=(x+72)2+494484=(x+72)2+14-x^2 - 7x - 12 = -(x^2 + 7x) - 12 = -( (x + \frac{7}{2})^2 - (\frac{7}{2})^2) - 12 = -(x + \frac{7}{2})^2 + \frac{49}{4} - 12 = -(x + \frac{7}{2})^2 + \frac{49}{4} - \frac{48}{4} = -(x + \frac{7}{2})^2 + \frac{1}{4}
(8) 3x2+9x+183x^2 + 9x + 18
3x2+9x+18=3(x2+3x)+18=3((x+32)2(32)2)+18=3(x+32)2274+18=3(x+32)2274+724=3(x+32)2+4543x^2 + 9x + 18 = 3(x^2 + 3x) + 18 = 3((x + \frac{3}{2})^2 - (\frac{3}{2})^2) + 18 = 3(x + \frac{3}{2})^2 - \frac{27}{4} + 18 = 3(x + \frac{3}{2})^2 - \frac{27}{4} + \frac{72}{4} = 3(x + \frac{3}{2})^2 + \frac{45}{4}
(9) 2x2+10x-2x^2 + 10x
2x2+10x=2(x25x)=2((x52)2(52)2)=2(x52)2+2(254)=2(x52)2+252-2x^2 + 10x = -2(x^2 - 5x) = -2((x - \frac{5}{2})^2 - (\frac{5}{2})^2) = -2(x - \frac{5}{2})^2 + 2(\frac{25}{4}) = -2(x - \frac{5}{2})^2 + \frac{25}{2}

3. 最終的な答え

(1) (x+3)29(x + 3)^2 - 9
(2) (x2)2+5(x - 2)^2 + 5
(3) 2(x+2)272(x + 2)^2 - 7
(4) (x1)2+6-(x - 1)^2 + 6
(5) 3(x+3)2+7-3(x + 3)^2 + 7
(6) (x12)2+114(x - \frac{1}{2})^2 + \frac{11}{4}
(7) (x+72)2+14-(x + \frac{7}{2})^2 + \frac{1}{4}
(8) 3(x+32)2+4543(x + \frac{3}{2})^2 + \frac{45}{4}
(9) 2(x52)2+252-2(x - \frac{5}{2})^2 + \frac{25}{2}