The problem is to solve the inequality $\frac{4}{5}x - (x+3) < \frac{1}{3}(x-1)$.

AlgebraInequalitiesLinear InequalitiesAlgebraic Manipulation
2025/6/5

1. Problem Description

The problem is to solve the inequality 45x(x+3)<13(x1)\frac{4}{5}x - (x+3) < \frac{1}{3}(x-1).

2. Solution Steps

We need to solve the inequality 45x(x+3)<13(x1)\frac{4}{5}x - (x+3) < \frac{1}{3}(x-1).
First, we simplify the left side:
45xx3<13(x1)\frac{4}{5}x - x - 3 < \frac{1}{3}(x-1)
45x55x3<13(x1)\frac{4}{5}x - \frac{5}{5}x - 3 < \frac{1}{3}(x-1)
15x3<13(x1)-\frac{1}{5}x - 3 < \frac{1}{3}(x-1)
Now we simplify the right side:
15x3<13x13-\frac{1}{5}x - 3 < \frac{1}{3}x - \frac{1}{3}
Next, we want to isolate xx. Add 15x\frac{1}{5}x to both sides:
3<13x+15x13-3 < \frac{1}{3}x + \frac{1}{5}x - \frac{1}{3}
3<515x+315x13-3 < \frac{5}{15}x + \frac{3}{15}x - \frac{1}{3}
3<815x13-3 < \frac{8}{15}x - \frac{1}{3}
Now, add 13\frac{1}{3} to both sides:
3+13<815x-3 + \frac{1}{3} < \frac{8}{15}x
93+13<815x-\frac{9}{3} + \frac{1}{3} < \frac{8}{15}x
83<815x-\frac{8}{3} < \frac{8}{15}x
Now, multiply both sides by 158\frac{15}{8}. Since 158\frac{15}{8} is positive, we do not need to flip the inequality sign:
83158<x-\frac{8}{3} \cdot \frac{15}{8} < x
153<x-\frac{15}{3} < x
5<x-5 < x
Therefore, x>5x > -5.

3. Final Answer

x>5x > -5