We are asked to complete the table for the function $y = \frac{1}{2}(7)^x$ for the given values of $x$: $-1$, $0$, $1$, and $2$.

AlgebraExponential FunctionsFunction EvaluationExponents
2025/6/5

1. Problem Description

We are asked to complete the table for the function y=12(7)xy = \frac{1}{2}(7)^x for the given values of xx: 1-1, 00, 11, and 22.

2. Solution Steps

We will substitute each value of xx into the equation y=12(7)xy = \frac{1}{2}(7)^x and calculate the corresponding value of yy.
Case x=1x = -1:
y=12(7)1=1217=114y = \frac{1}{2}(7)^{-1} = \frac{1}{2} \cdot \frac{1}{7} = \frac{1}{14}
Case x=0x = 0:
y=12(7)0=121=12y = \frac{1}{2}(7)^{0} = \frac{1}{2} \cdot 1 = \frac{1}{2}
Case x=1x = 1:
y=12(7)1=127=72y = \frac{1}{2}(7)^{1} = \frac{1}{2} \cdot 7 = \frac{7}{2}
Case x=2x = 2:
y=12(7)2=1249=492y = \frac{1}{2}(7)^{2} = \frac{1}{2} \cdot 49 = \frac{49}{2}

3. Final Answer

The completed table is:
x=1,y=114x = -1, y = \frac{1}{14}
x=0,y=12x = 0, y = \frac{1}{2}
x=1,y=72x = 1, y = \frac{7}{2}
x=2,y=492x = 2, y = \frac{49}{2}