Simplify the expression $\frac{(2m^2n)^3}{(mn^3)^2 \times (4m)^2}$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/6/5

1. Problem Description

Simplify the expression (2m2n)3(mn3)2×(4m)2\frac{(2m^2n)^3}{(mn^3)^2 \times (4m)^2}.

2. Solution Steps

First, simplify the numerator:
(2m2n)3=23(m2)3n3=8m6n3(2m^2n)^3 = 2^3 (m^2)^3 n^3 = 8m^6n^3
Next, simplify the denominator:
(mn3)2=m2(n3)2=m2n6(mn^3)^2 = m^2(n^3)^2 = m^2n^6
(4m)2=42m2=16m2(4m)^2 = 4^2 m^2 = 16m^2
(mn3)2×(4m)2=(m2n6)(16m2)=16m4n6(mn^3)^2 \times (4m)^2 = (m^2n^6)(16m^2) = 16m^4n^6
Then, rewrite the expression:
(2m2n)3(mn3)2×(4m)2=8m6n316m4n6\frac{(2m^2n)^3}{(mn^3)^2 \times (4m)^2} = \frac{8m^6n^3}{16m^4n^6}
Now, simplify the fraction by dividing the coefficients and subtracting the exponents of like variables:
816=12\frac{8}{16} = \frac{1}{2}
m6m4=m64=m2\frac{m^6}{m^4} = m^{6-4} = m^2
n3n6=n36=n3=1n3\frac{n^3}{n^6} = n^{3-6} = n^{-3} = \frac{1}{n^3}
Combining these results:
8m6n316m4n6=12m21n3=m22n3\frac{8m^6n^3}{16m^4n^6} = \frac{1}{2} m^2 \frac{1}{n^3} = \frac{m^2}{2n^3}

3. Final Answer

m22n3\frac{m^2}{2n^3}

Related problems in "Algebra"