We are given a sequence $(u_n)$ defined by the recurrence relation $u_n = -\frac{1}{3}u_{n-1} + 1$ with initial value $u_0 = 3$. The problem consists of several parts: a) Calculate $u_2$, $u_3$ and $u_4$. b) Show that the sequence $(u_n)$ is neither arithmetic nor geometric. 2a) Define a new sequence $w_n = u_n - \frac{3}{4}$. Calculate $w_0$, $w_1$ and $w_2$. b) Show that the sequence $(w_n)$ is geometric and justify that it is convergent, specifying its limit. c) Deduce the limit of $(u_n)$. 3a) Express $w_n$ and $u_n$ as functions of $n$. Justify why $\lim_{n \to \infty} (-\frac{1}{3})^n = 0$. b) Define $S_n = w_1 + w_2 + \dots + w_n$. Calculate $S_n$ as a function of $n$, and then $\lim_{n \to \infty} S_n$. c) Define $T_n = u_1 + u_2 + \dots + u_n$. Deduce $T_n$ as a function of $n$ and then calculate $\lim_{n \to \infty} T_n$.

AnalysisSequencesRecurrence RelationsLimitsGeometric SequencesSeries
2025/3/27

1. Problem Description

We are given a sequence (un)(u_n) defined by the recurrence relation un=13un1+1u_n = -\frac{1}{3}u_{n-1} + 1 with initial value u0=3u_0 = 3. The problem consists of several parts:
a) Calculate u2u_2, u3u_3 and u4u_4.
b) Show that the sequence (un)(u_n) is neither arithmetic nor geometric.
2a) Define a new sequence wn=un34w_n = u_n - \frac{3}{4}. Calculate w0w_0, w1w_1 and w2w_2.
b) Show that the sequence (wn)(w_n) is geometric and justify that it is convergent, specifying its limit.
c) Deduce the limit of (un)(u_n).
3a) Express wnw_n and unu_n as functions of nn. Justify why limn(13)n=0\lim_{n \to \infty} (-\frac{1}{3})^n = 0.
b) Define Sn=w1+w2++wnS_n = w_1 + w_2 + \dots + w_n. Calculate SnS_n as a function of nn, and then limnSn\lim_{n \to \infty} S_n.
c) Define Tn=u1+u2++unT_n = u_1 + u_2 + \dots + u_n. Deduce TnT_n as a function of nn and then calculate limnTn\lim_{n \to \infty} T_n.

2. Solution Steps

1a) Calculate u2u_2, u3u_3 and u4u_4.
We have u0=3u_0 = 3 and un=13un1+1u_n = -\frac{1}{3}u_{n-1} + 1.
u1=13u0+1=13(3)+1=1+1=0u_1 = -\frac{1}{3}u_0 + 1 = -\frac{1}{3}(3) + 1 = -1 + 1 = 0.
u2=13u1+1=13(0)+1=1u_2 = -\frac{1}{3}u_1 + 1 = -\frac{1}{3}(0) + 1 = 1.
u3=13u2+1=13(1)+1=13+1=23u_3 = -\frac{1}{3}u_2 + 1 = -\frac{1}{3}(1) + 1 = -\frac{1}{3} + 1 = \frac{2}{3}.
u4=13u3+1=13(23)+1=29+1=79u_4 = -\frac{1}{3}u_3 + 1 = -\frac{1}{3}(\frac{2}{3}) + 1 = -\frac{2}{9} + 1 = \frac{7}{9}.
b) Show that (un)(u_n) is neither arithmetic nor geometric.
For (un)(u_n) to be arithmetic, u1u0=u2u1u_1 - u_0 = u_2 - u_1 must hold.
u1u0=03=3u_1 - u_0 = 0 - 3 = -3.
u2u1=10=1u_2 - u_1 = 1 - 0 = 1.
Since 31-3 \ne 1, (un)(u_n) is not arithmetic.
For (un)(u_n) to be geometric, u1u0=u2u1\frac{u_1}{u_0} = \frac{u_2}{u_1} must hold.
u1u0=03=0\frac{u_1}{u_0} = \frac{0}{3} = 0.
u2u1=10\frac{u_2}{u_1} = \frac{1}{0}, which is undefined.
Since u1=0u_1 = 0, (un)(u_n) is not geometric.
2a) On pose wn=un34w_n = u_n - \frac{3}{4}. Calculate w0w_0, w1w_1 and w2w_2.
w0=u034=334=12434=94w_0 = u_0 - \frac{3}{4} = 3 - \frac{3}{4} = \frac{12}{4} - \frac{3}{4} = \frac{9}{4}.
w1=u134=034=34w_1 = u_1 - \frac{3}{4} = 0 - \frac{3}{4} = -\frac{3}{4}.
w2=u234=134=4434=14w_2 = u_2 - \frac{3}{4} = 1 - \frac{3}{4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4}.
b) Show that (wn)(w_n) is geometric and justify that it is convergent.
wn=un34w_n = u_n - \frac{3}{4}. Then un=wn+34u_n = w_n + \frac{3}{4}.
wn=un34=13un1+134=13(wn1+34)+14=13wn114+14=13wn1w_n = u_n - \frac{3}{4} = -\frac{1}{3}u_{n-1} + 1 - \frac{3}{4} = -\frac{1}{3}(w_{n-1} + \frac{3}{4}) + \frac{1}{4} = -\frac{1}{3}w_{n-1} - \frac{1}{4} + \frac{1}{4} = -\frac{1}{3}w_{n-1}.
Thus, wn=13wn1w_n = -\frac{1}{3}w_{n-1}. Therefore, (wn)(w_n) is a geometric sequence with common ratio r=13r = -\frac{1}{3} and first term w0=94w_0 = \frac{9}{4}.
Since r=13=13<1|r| = |-\frac{1}{3}| = \frac{1}{3} < 1, the geometric sequence (wn)(w_n) is convergent, and its limit is

0. $\lim_{n \to \infty} w_n = 0$.

c) Deduce the limit of (un)(u_n).
Since wn=un34w_n = u_n - \frac{3}{4}, we have un=wn+34u_n = w_n + \frac{3}{4}.
Taking the limit as nn \to \infty, we have limnun=limn(wn+34)=limnwn+34=0+34=34\lim_{n \to \infty} u_n = \lim_{n \to \infty} (w_n + \frac{3}{4}) = \lim_{n \to \infty} w_n + \frac{3}{4} = 0 + \frac{3}{4} = \frac{3}{4}.
3a) Express wnw_n and unu_n as functions of nn.
Since (wn)(w_n) is geometric with w0=94w_0 = \frac{9}{4} and r=13r = -\frac{1}{3}, we have wn=w0rn=94(13)nw_n = w_0 \cdot r^n = \frac{9}{4}(-\frac{1}{3})^n.
Since un=wn+34u_n = w_n + \frac{3}{4}, we have un=94(13)n+34u_n = \frac{9}{4}(-\frac{1}{3})^n + \frac{3}{4}.
Since 13<1|\frac{-1}{3}| < 1, limn(13)n=0\lim_{n \to \infty} (-\frac{1}{3})^n = 0.
b) Calculate Sn=w1+w2++wnS_n = w_1 + w_2 + \dots + w_n and limnSn\lim_{n \to \infty} S_n.
SnS_n is the sum of the first nn terms of the geometric sequence (wn)(w_n) starting from w1w_1.
Sn=i=1nwi=i=1n94(13)i=94i=1n(13)iS_n = \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} \frac{9}{4}(-\frac{1}{3})^i = \frac{9}{4} \sum_{i=1}^{n} (-\frac{1}{3})^i.
i=1nri=r(1rn)1r\sum_{i=1}^{n} r^i = \frac{r(1-r^n)}{1-r}
So, Sn=94(13)(1(13)n)1(13)=94(13)(1(13)n)43=94(13)(34)(1(13)n)=916(1(13)n)S_n = \frac{9}{4} \frac{(-\frac{1}{3})(1 - (-\frac{1}{3})^n)}{1 - (-\frac{1}{3})} = \frac{9}{4} \frac{(-\frac{1}{3})(1 - (-\frac{1}{3})^n)}{\frac{4}{3}} = \frac{9}{4} (-\frac{1}{3}) (\frac{3}{4}) (1 - (-\frac{1}{3})^n) = -\frac{9}{16} (1 - (-\frac{1}{3})^n).
Then, limnSn=limn(916(1(13)n))=916(10)=916\lim_{n \to \infty} S_n = \lim_{n \to \infty} (-\frac{9}{16} (1 - (-\frac{1}{3})^n)) = -\frac{9}{16} (1 - 0) = -\frac{9}{16}.
c) Calculate Tn=u1+u2++unT_n = u_1 + u_2 + \dots + u_n and limnTn\lim_{n \to \infty} T_n.
Tn=i=1nui=i=1n(wi+34)=i=1nwi+i=1n34=Sn+n(34)=916(1(13)n)+3n4T_n = \sum_{i=1}^n u_i = \sum_{i=1}^n (w_i + \frac{3}{4}) = \sum_{i=1}^n w_i + \sum_{i=1}^n \frac{3}{4} = S_n + n(\frac{3}{4}) = -\frac{9}{16} (1 - (-\frac{1}{3})^n) + \frac{3n}{4}.
limnTn=limn(916(1(13)n)+3n4)=limn(916+3n4)\lim_{n \to \infty} T_n = \lim_{n \to \infty} (-\frac{9}{16} (1 - (-\frac{1}{3})^n) + \frac{3n}{4}) = \lim_{n \to \infty} (-\frac{9}{16} + \frac{3n}{4}).
Since limn3n4=\lim_{n \to \infty} \frac{3n}{4} = \infty, we have limnTn=\lim_{n \to \infty} T_n = \infty.

3. Final Answer

1a) u2=1u_2 = 1, u3=23u_3 = \frac{2}{3}, u4=79u_4 = \frac{7}{9}.
b) (un)(u_n) is neither arithmetic nor geometric.
2a) w0=94w_0 = \frac{9}{4}, w1=34w_1 = -\frac{3}{4}, w2=14w_2 = \frac{1}{4}.
b) (wn)(w_n) is geometric with r=13r = -\frac{1}{3}. limnwn=0\lim_{n \to \infty} w_n = 0.
c) limnun=34\lim_{n \to \infty} u_n = \frac{3}{4}.
3a) wn=94(13)nw_n = \frac{9}{4}(-\frac{1}{3})^n, un=94(13)n+34u_n = \frac{9}{4}(-\frac{1}{3})^n + \frac{3}{4}. limn(13)n=0\lim_{n \to \infty} (-\frac{1}{3})^n = 0.
b) Sn=916(1(13)n)S_n = -\frac{9}{16} (1 - (-\frac{1}{3})^n). limnSn=916\lim_{n \to \infty} S_n = -\frac{9}{16}.
c) Tn=916(1(13)n)+3n4T_n = -\frac{9}{16} (1 - (-\frac{1}{3})^n) + \frac{3n}{4}. limnTn=\lim_{n \to \infty} T_n = \infty.

Related problems in "Analysis"

We are asked to evaluate the definite integral $\int_{0}^{\frac{\pi}{6}} \frac{\sin x \sin(x + \frac...

Definite IntegralTrigonometric IdentitiesSubstitutionIntegration Techniques
2025/4/12

The problem has two parts. Part (a) asks to determine the truthfulness of two statements and provide...

CalculusExtreme ValuesRolle's TheoremHyperbolic Functions
2025/4/12

The problem asks us to determine whether two statements about differentiability and continuity are t...

DifferentiabilityContinuityLimitsReal AnalysisContrapositive
2025/4/11

The problem asks us to find the domain of the function $f(x) = \frac{\sqrt{(\sqrt{x})^x - x^{\sqrt{x...

DomainFunctionsLogarithmsExponentsInequalities
2025/4/11

a) We are given the function $f(x) = \sqrt{ax - b}$, where $a, b \in \mathbb{R}$ and $a > 0$. We nee...

LimitsInverse Hyperbolic FunctionsCalculus
2025/4/11

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5