## 1. 問題の内容解析学積分不定積分置換積分三角関数2025/6/9##1. 問題の内容与えられた積分を計算する問題です。ttt 以外の文字は定数とみなし、不定積分を計算する際に積分定数 CCC を加えます。(1) ∫(at2+bt+c+dt+et2)dt\int (at^2 + bt + c + \frac{d}{t} + \frac{e}{t^2}) dt∫(at2+bt+c+td+t2e)dt(2) ∫asin(ωt+b)dt\int a \sin(\omega t + b) dt∫asin(ωt+b)dt(3) ∫acos(ωt+b)dt\int a \cos(\omega t + b) dt∫acos(ωt+b)dt##2. 解き方の手順**(1) ∫(at2+bt+c+dt+et2)dt\int (at^2 + bt + c + \frac{d}{t} + \frac{e}{t^2}) dt∫(at2+bt+c+td+t2e)dt**各項ごとに積分します。∫at2dt=a3t3\int at^2 dt = \frac{a}{3}t^3∫at2dt=3at3∫btdt=b2t2\int bt dt = \frac{b}{2}t^2∫btdt=2bt2∫cdt=ct\int c dt = ct∫cdt=ct∫dtdt=dln∣t∣\int \frac{d}{t} dt = d \ln|t|∫tddt=dln∣t∣∫et2dt=e∫t−2dt=et−1−1=−et\int \frac{e}{t^2} dt = e \int t^{-2} dt = e \frac{t^{-1}}{-1} = -\frac{e}{t}∫t2edt=e∫t−2dt=e−1t−1=−teしたがって、∫(at2+bt+c+dt+et2)dt=a3t3+b2t2+ct+dln∣t∣−et+C\int (at^2 + bt + c + \frac{d}{t} + \frac{e}{t^2}) dt = \frac{a}{3}t^3 + \frac{b}{2}t^2 + ct + d \ln|t| - \frac{e}{t} + C∫(at2+bt+c+td+t2e)dt=3at3+2bt2+ct+dln∣t∣−te+C**(2) ∫asin(ωt+b)dt\int a \sin(\omega t + b) dt∫asin(ωt+b)dt**置換積分を行います。u=ωt+bu = \omega t + bu=ωt+b とおくと、dudt=ω\frac{du}{dt} = \omegadtdu=ω より dt=1ωdudt = \frac{1}{\omega} dudt=ω1du です。∫asin(ωt+b)dt=∫asin(u)1ωdu=aω∫sin(u)du=aω(−cos(u))+C=−aωcos(ωt+b)+C\int a \sin(\omega t + b) dt = \int a \sin(u) \frac{1}{\omega} du = \frac{a}{\omega} \int \sin(u) du = \frac{a}{\omega} (-\cos(u)) + C = -\frac{a}{\omega} \cos(\omega t + b) + C∫asin(ωt+b)dt=∫asin(u)ω1du=ωa∫sin(u)du=ωa(−cos(u))+C=−ωacos(ωt+b)+C**(3) ∫acos(ωt+b)dt\int a \cos(\omega t + b) dt∫acos(ωt+b)dt**置換積分を行います。u=ωt+bu = \omega t + bu=ωt+b とおくと、dudt=ω\frac{du}{dt} = \omegadtdu=ω より dt=1ωdudt = \frac{1}{\omega} dudt=ω1du です。∫acos(ωt+b)dt=∫acos(u)1ωdu=aω∫cos(u)du=aω(sin(u))+C=aωsin(ωt+b)+C\int a \cos(\omega t + b) dt = \int a \cos(u) \frac{1}{\omega} du = \frac{a}{\omega} \int \cos(u) du = \frac{a}{\omega} (\sin(u)) + C = \frac{a}{\omega} \sin(\omega t + b) + C∫acos(ωt+b)dt=∫acos(u)ω1du=ωa∫cos(u)du=ωa(sin(u))+C=ωasin(ωt+b)+C##3. 最終的な答え(1) a3t3+b2t2+ct+dln∣t∣−et+C\frac{a}{3}t^3 + \frac{b}{2}t^2 + ct + d \ln|t| - \frac{e}{t} + C3at3+2bt2+ct+dln∣t∣−te+C(2) −aωcos(ωt+b)+C-\frac{a}{\omega} \cos(\omega t + b) + C−ωacos(ωt+b)+C(3) aωsin(ωt+b)+C\frac{a}{\omega} \sin(\omega t + b) + Cωasin(ωt+b)+C