与えられた定積分 $\int_{0}^{2} x(x-2)^3 dx$ を計算する問題です。解析学定積分積分多項式2025/6/91. 問題の内容与えられた定積分 ∫02x(x−2)3dx\int_{0}^{2} x(x-2)^3 dx∫02x(x−2)3dx を計算する問題です。2. 解き方の手順まず、(x−2)3(x-2)^3(x−2)3 を展開します。(x−2)3=x3−6x2+12x−8(x-2)^3 = x^3 - 6x^2 + 12x - 8(x−2)3=x3−6x2+12x−8次に、被積分関数を展開します。x(x−2)3=x(x3−6x2+12x−8)=x4−6x3+12x2−8xx(x-2)^3 = x(x^3 - 6x^2 + 12x - 8) = x^4 - 6x^3 + 12x^2 - 8xx(x−2)3=x(x3−6x2+12x−8)=x4−6x3+12x2−8x積分を計算します。∫02(x4−6x3+12x2−8x)dx=[x55−6x44+12x33−8x22]02\int_{0}^{2} (x^4 - 6x^3 + 12x^2 - 8x) dx = [\frac{x^5}{5} - \frac{6x^4}{4} + \frac{12x^3}{3} - \frac{8x^2}{2}]_{0}^{2}∫02(x4−6x3+12x2−8x)dx=[5x5−46x4+312x3−28x2]02=[x55−3x42+4x3−4x2]02= [\frac{x^5}{5} - \frac{3x^4}{2} + 4x^3 - 4x^2]_{0}^{2}=[5x5−23x4+4x3−4x2]02=(255−3(24)2+4(23)−4(22))−(055−3(04)2+4(03)−4(02))= (\frac{2^5}{5} - \frac{3(2^4)}{2} + 4(2^3) - 4(2^2)) - (\frac{0^5}{5} - \frac{3(0^4)}{2} + 4(0^3) - 4(0^2))=(525−23(24)+4(23)−4(22))−(505−23(04)+4(03)−4(02))=325−3(16)2+4(8)−4(4)= \frac{32}{5} - \frac{3(16)}{2} + 4(8) - 4(4)=532−23(16)+4(8)−4(4)=325−24+32−16= \frac{32}{5} - 24 + 32 - 16=532−24+32−16=325−8= \frac{32}{5} - 8=532−8=325−405= \frac{32}{5} - \frac{40}{5}=532−540=−85= -\frac{8}{5}=−583. 最終的な答え−85-\frac{8}{5}−58