まず、ex−3=0 となる x を求めます。 したがって、Aは3です。
y=ex−3 が y 軸と交わる点は、x=0 のときなので、y=e0−3=1−3=−2 です。したがって、積分範囲は 0 から log3 となります。 S=−∫0log3(ex−3)dx したがって、Bは0, Cは3です。
S=−[ex−3x]0log3 したがって、Dはx, Eは3です。
S=−[(elog3−3log3)−(e0−3⋅0)] S=−[(3−3log3)−(1−0)] S=−[3−3log3−1] S=−[2−3log3] S=−2+3log3 S=3log3−2 したがって、Fは0, Gは3, Hは3, Iは3, Jは2です。