The problem requires us to express the transformed function $g(x)$ in both function notation and equation form, given the parent function $f(x)$ and a series of transformations. We are given three different parent functions and their corresponding transformations.

AlgebraFunction TransformationsVertical ShiftsHorizontal ShiftsFunction NotationEquation FormPolynomial FunctionsSquare Root Functions
2025/6/12

1. Problem Description

The problem requires us to express the transformed function g(x)g(x) in both function notation and equation form, given the parent function f(x)f(x) and a series of transformations. We are given three different parent functions and their corresponding transformations.

2. Solution Steps

Case 1: f(x)=x3f(x) = x^3
Vertical shift up by 3: f(x)+3f(x) + 3
Horizontal shift left by 4: f(x+4)f(x + 4)
Combining the transformations: f(x+4)+3f(x + 4) + 3
Function Notation: g(x)=f(x+4)+3g(x) = f(x + 4) + 3
Equation Form: g(x)=(x+4)3+3g(x) = (x + 4)^3 + 3
Case 2: f(x)=x2f(x) = x^2
Vertical stretch by a factor of 3: 3f(x)3f(x)
Vertical shift down by 2: 3f(x)23f(x) - 2
Horizontal shift left by 1: 3f(x+1)23f(x + 1) - 2
Function Notation: g(x)=3f(x+1)2g(x) = 3f(x + 1) - 2
Equation Form: g(x)=3(x+1)22g(x) = 3(x + 1)^2 - 2
Case 3: f(x)=xf(x) = \sqrt{x}
Vertical stretch by a factor of 43\frac{4}{3}: 43f(x)\frac{4}{3}f(x)
Vertical shift down by 1: 43f(x)1\frac{4}{3}f(x) - 1
Horizontal shift right by 2: 43f(x2)1\frac{4}{3}f(x - 2) - 1
Function Notation: g(x)=43f(x2)1g(x) = \frac{4}{3}f(x - 2) - 1
Equation Form: g(x)=43x21g(x) = \frac{4}{3}\sqrt{x - 2} - 1

3. Final Answer

Case 1:
Function Notation: g(x)=f(x+4)+3g(x) = f(x + 4) + 3
Equation Form: g(x)=(x+4)3+3g(x) = (x + 4)^3 + 3
Case 2:
Function Notation: g(x)=3f(x+1)2g(x) = 3f(x + 1) - 2
Equation Form: g(x)=3(x+1)22g(x) = 3(x + 1)^2 - 2
Case 3:
Function Notation: g(x)=43f(x2)1g(x) = \frac{4}{3}f(x - 2) - 1
Equation Form: g(x)=43x21g(x) = \frac{4}{3}\sqrt{x - 2} - 1

Related problems in "Algebra"

Find two positive numbers whose sum is 110 and whose product is maximized.

OptimizationQuadratic FunctionsCalculus (Implicitly)MaximizationWord Problem
2025/6/12

The problem requires us to analyze the transformation of a parabola from its parent function $f(x) =...

Quadratic FunctionsTransformationsDomainRangeFunction Notation
2025/6/12

We are given three functions: $f(x) = \frac{1}{5}x^2$, $p(x) = -x$, and $z(x) = x + 8$. We need to f...

Function CompositionTransformationsQuadratic FunctionsVertical CompressionVertical Shift
2025/6/12

We are given the graph of a parabola $g(x)$ which is a transformation of the parent function $f(x) =...

Quadratic FunctionsTransformations of FunctionsVertex FormDomain and RangeParabolas
2025/6/12

We are given three functions: $f(x) = -\frac{1}{2}x^2$, $z(x) = x - 4$, and $p(x) = x + 5$. First, w...

Function CompositionTransformations of FunctionsQuadratic FunctionsVertical CompressionHorizontal ShiftReflection
2025/6/12

The problem describes a transformation of the parent function $f(x) = |x|$ to a transformed function...

Function TransformationsAbsolute Value FunctionsDomain and RangeGraphing
2025/6/12

We are given three functions: $f(x) = \frac{1}{x}$, $r(x) = x+4$, and $m(x) = 8x$. We need to find t...

FunctionsComposite FunctionsTransformationsVertical StretchHorizontal Shift
2025/6/12

Given the point $(2, 5)$ on the graph of $f(x)$, we want to find a point on the graph of $y = f(x - ...

Function TransformationsGraphingHorizontal ShiftVertical Shift
2025/6/12

The point $(-9, 1)$ lies on the graph of $f(x)$. Given the transformation $g(x) = 2f(-x) + 3$, we ne...

FunctionsTransformationsGraphing
2025/6/12

The problem asks us to find the function notation and equation form of a transformed absolute value ...

FunctionsTransformationsAbsolute ValueFunction NotationVertical StretchVertical ShiftHorizontal Shift
2025/6/12