We are asked to find the indefinite integral of the function $\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}$ with respect to $x$.

AnalysisIntegrationIndefinite IntegralTrigonometric FunctionsDifferentiation
2025/3/9

1. Problem Description

We are asked to find the indefinite integral of the function x2+72(xsinx+9cosx)2\frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} with respect to xx.

2. Solution Steps

Let u=xsinx+9cosxu = x \sin x + 9 \cos x. Then, we compute the derivative of uu with respect to xx:
dudx=ddx(xsinx+9cosx)=sinx+xcosx9sinx=xcosx8sinx\frac{du}{dx} = \frac{d}{dx}(x \sin x + 9 \cos x) = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
We notice that x2+72=x2+819x^2 + 72 = x^2 + 81 - 9, and we seek a form A(xcosx8sinx)(xsinx+9cosx)2+Bxsinx+9cosx\frac{A(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2} + \frac{B}{x \sin x + 9 \cos x}, for some constant AA. Let's consider the derivative of xcosx9sinxxsinx+9cosx\frac{x \cos x - 9 \sin x}{x \sin x + 9 \cos x}.
ddx(f(x)g(x))=f(x)g(x)f(x)g(x)g(x)2\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.
Let f(x)=xcosx+9sinxf(x) = -x \cos x + 9 \sin x and g(x)=xsinx+9cosxg(x) = x \sin x + 9 \cos x. Then
f(x)=cosx+xsinx+9cosx=xsinx+8cosxf'(x) = -\cos x + x \sin x + 9 \cos x = x \sin x + 8 \cos x
g(x)=sinx+xcosx9sinx=xcosx8sinxg'(x) = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
Then, ddx(xcosx+9sinxxsinx+9cosx)=(xsinx+8cosx)(xsinx+9cosx)(xcosx+9sinx)(xcosx8sinx)(xsinx+9cosx)2\frac{d}{dx}\left( \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} \right) = \frac{(x \sin x + 8 \cos x)(x \sin x + 9 \cos x) - (-x \cos x + 9 \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}.
The numerator is
x2sin2x+9xsinxcosx+8xsinxcosx+72cos2x(x2cos2x+8xcosxsinx+9xsinxcosx72sin2x)=x^2 \sin^2 x + 9x \sin x \cos x + 8x \sin x \cos x + 72 \cos^2 x - (-x^2 \cos^2 x + 8x \cos x \sin x + 9x \sin x \cos x - 72 \sin^2 x) =
x2sin2x+17xsinxcosx+72cos2x+x2cos2x17xsinxcosx+72sin2x=x^2 \sin^2 x + 17x \sin x \cos x + 72 \cos^2 x + x^2 \cos^2 x - 17x \sin x \cos x + 72 \sin^2 x =
x2(sin2x+cos2x)+72(cos2x+sin2x)=x2+72x^2(\sin^2 x + \cos^2 x) + 72(\cos^2 x + \sin^2 x) = x^2 + 72.
So, x2+72(xsinx+9cosx)2dx=ddx(xcosx+9sinxxsinx+9cosx)dx=xcosx+9sinxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \int \frac{d}{dx} \left( \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} \right) dx = \frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C.

3. Final Answer

xcosx+9sinxxsinx+9cosx+C\frac{-x \cos x + 9 \sin x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

We are asked to evaluate the double integral $\int_{-1}^{4}\int_{1}^{2} (x+y^2) \, dy \, dx$.

Double IntegralsIntegration
2025/6/5

The problem asks us to evaluate the double integral $\int_0^2 \int_1^3 x^2 y \, dy \, dx$.

Double IntegralIntegrationCalculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) dA$, where $R = \{(x, y): 1 \le x \le ...

Double IntegralsPiecewise FunctionsIntegrationMultivariable Calculus
2025/6/5

We are asked to evaluate the double integral $\iint_R f(x, y) \, dA$, where $R = \{(x, y): 1 \le x \...

Double IntegralsPiecewise FunctionsIntegration
2025/6/5

We are asked to evaluate the indefinite integral $\int xe^{-2x} dx$.

IntegrationIntegration by PartsIndefinite Integral
2025/6/5

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4