First, let's simplify log 2 3 + log 4 9 + log 8 27 + log 16 81 \log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81 log 2 3 + log 4 9 + log 8 27 + log 16 81 . Using the change of base formula, log a n b m = m n log a b \log_{a^n} b^m = \frac{m}{n} \log_{a} b log a n b m = n m log a b , we have: log 2 3 = log 2 3 \log_{2} 3 = \log_{2} 3 log 2 3 = log 2 3 log 4 9 = log 2 2 3 2 = 2 2 log 2 3 = log 2 3 \log_{4} 9 = \log_{2^2} 3^2 = \frac{2}{2} \log_{2} 3 = \log_{2} 3 log 4 9 = log 2 2 3 2 = 2 2 log 2 3 = log 2 3 log 8 27 = log 2 3 3 3 = 3 3 log 2 3 = log 2 3 \log_{8} 27 = \log_{2^3} 3^3 = \frac{3}{3} \log_{2} 3 = \log_{2} 3 log 8 27 = log 2 3 3 3 = 3 3 log 2 3 = log 2 3 log 16 81 = log 2 4 3 4 = 4 4 log 2 3 = log 2 3 \log_{16} 81 = \log_{2^4} 3^4 = \frac{4}{4} \log_{2} 3 = \log_{2} 3 log 16 81 = log 2 4 3 4 = 4 4 log 2 3 = log 2 3 Therefore, log 2 3 + log 4 9 + log 8 27 + log 16 81 = 4 log 2 3 \log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81 = 4 \log_{2} 3 log 2 3 + log 4 9 + log 8 27 + log 16 81 = 4 log 2 3 .
Now, we can rewrite the original expression as:
log 9 32 6 ( 4 log 2 3 ) = log 9 ( 32 1 6 ( 4 log 2 3 ) ) \log_{9} \sqrt[6]{32} (4 \log_{2} 3) = \log_{9} (32^{\frac{1}{6}} (4 \log_{2} 3)) log 9 6 32 ( 4 log 2 3 ) = log 9 ( 3 2 6 1 ( 4 log 2 3 )) . We know that 32 = 2 5 32 = 2^5 32 = 2 5 , so 32 1 6 = ( 2 5 ) 1 6 = 2 5 6 32^{\frac{1}{6}} = (2^5)^{\frac{1}{6}} = 2^{\frac{5}{6}} 3 2 6 1 = ( 2 5 ) 6 1 = 2 6 5 . Thus, log 9 ( 2 5 6 ⋅ 4 log 2 3 ) = log 9 ( 2 5 6 ⋅ 2 2 log 2 3 ) = log 9 ( 2 17 6 log 2 3 ) \log_{9} (2^{\frac{5}{6}} \cdot 4 \log_{2} 3) = \log_{9} (2^{\frac{5}{6}} \cdot 2^2 \log_{2} 3) = \log_{9} (2^{\frac{17}{6}} \log_{2} 3) log 9 ( 2 6 5 ⋅ 4 log 2 3 ) = log 9 ( 2 6 5 ⋅ 2 2 log 2 3 ) = log 9 ( 2 6 17 log 2 3 ) .
This seems difficult to simplify further. Let's rewrite the expression in terms of a common base.
Original expression: log 9 32 6 ( log 2 3 + log 4 9 + log 8 27 + log 16 81 ) = log 9 ( 32 1 6 ) ( 4 log 2 3 ) \log_{9} \sqrt[6]{32} (\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81) = \log_{9} (32^{\frac{1}{6}}) (4 \log_{2} 3) log 9 6 32 ( log 2 3 + log 4 9 + log 8 27 + log 16 81 ) = log 9 ( 3 2 6 1 ) ( 4 log 2 3 ) = log 3 2 ( 2 5 ) 1 6 ( 4 log 2 3 ) = log 3 2 ( 2 5 6 ⋅ 2 2 log 2 3 ) = log 3 2 ( 2 17 6 log 2 3 ) = \log_{3^2} (2^5)^{\frac{1}{6}} (4 \log_{2} 3) = \log_{3^2} (2^{\frac{5}{6}} \cdot 2^2 \log_{2} 3) = \log_{3^2} (2^{\frac{17}{6}} \log_{2} 3) = log 3 2 ( 2 5 ) 6 1 ( 4 log 2 3 ) = log 3 2 ( 2 6 5 ⋅ 2 2 log 2 3 ) = log 3 2 ( 2 6 17 log 2 3 ) = 1 2 log 3 ( 2 17 6 log 2 3 ) = \frac{1}{2} \log_{3} (2^{\frac{17}{6}} \log_{2} 3) = 2 1 log 3 ( 2 6 17 log 2 3 ) Using the property log a ( x y ) = log a x + log a y \log_{a} (xy) = \log_{a} x + \log_{a} y log a ( x y ) = log a x + log a y , = 1 2 ( log 3 2 17 6 + log 3 ( log 2 3 ) ) = \frac{1}{2} (\log_{3} 2^{\frac{17}{6}} + \log_{3} (\log_{2} 3)) = 2 1 ( log 3 2 6 17 + log 3 ( log 2 3 )) = 1 2 ( 17 6 log 3 2 + log 3 ( log 2 3 ) ) = \frac{1}{2} (\frac{17}{6} \log_{3} 2 + \log_{3} (\log_{2} 3)) = 2 1 ( 6 17 log 3 2 + log 3 ( log 2 3 )) = 17 12 log 3 2 + 1 2 log 3 ( log 2 3 ) = \frac{17}{12} \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3) = 12 17 log 3 2 + 2 1 log 3 ( log 2 3 ) .
This looks complicated. Let's go back to the original expression.
log 9 32 6 ( 4 log 2 3 ) = log 9 2 5 6 ( 4 log 2 3 ) = log 3 2 2 5 6 ( 4 log 2 3 ) = 1 2 log 3 ( 2 5 6 ⋅ 4 log 2 3 ) \log_{9} \sqrt[6]{32} (4 \log_{2} 3) = \log_{9} \sqrt[6]{2^5} (4 \log_{2} 3) = \log_{3^2} 2^{\frac{5}{6}} (4 \log_{2} 3) = \frac{1}{2} \log_{3} (2^{\frac{5}{6}} \cdot 4 \log_{2} 3) log 9 6 32 ( 4 log 2 3 ) = log 9 6 2 5 ( 4 log 2 3 ) = log 3 2 2 6 5 ( 4 log 2 3 ) = 2 1 log 3 ( 2 6 5 ⋅ 4 log 2 3 ) = 1 2 log 3 ( 2 5 6 ) + 1 2 log 3 ( 4 log 2 3 ) = 1 2 ⋅ 5 6 log 3 2 + 1 2 log 3 ( 4 log 2 3 ) = \frac{1}{2} \log_{3} (2^{\frac{5}{6}}) + \frac{1}{2} \log_{3} (4 \log_{2} 3) = \frac{1}{2} \cdot \frac{5}{6} \log_{3} 2 + \frac{1}{2} \log_{3} (4 \log_{2} 3) = 2 1 log 3 ( 2 6 5 ) + 2 1 log 3 ( 4 log 2 3 ) = 2 1 ⋅ 6 5 log 3 2 + 2 1 log 3 ( 4 log 2 3 ) = 5 12 log 3 2 + 1 2 log 3 4 + 1 2 log 3 ( log 2 3 ) = 5 12 log 3 2 + 1 2 log 3 2 2 + 1 2 log 3 ( log 2 3 ) = \frac{5}{12} \log_{3} 2 + \frac{1}{2} \log_{3} 4 + \frac{1}{2} \log_{3} (\log_{2} 3) = \frac{5}{12} \log_{3} 2 + \frac{1}{2} \log_{3} 2^2 + \frac{1}{2} \log_{3} (\log_{2} 3) = 12 5 log 3 2 + 2 1 log 3 4 + 2 1 log 3 ( log 2 3 ) = 12 5 log 3 2 + 2 1 log 3 2 2 + 2 1 log 3 ( log 2 3 ) = 5 12 log 3 2 + log 3 2 + 1 2 log 3 ( log 2 3 ) = 17 12 log 3 2 + 1 2 log 3 ( log 2 3 ) = \frac{5}{12} \log_{3} 2 + \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3) = \frac{17}{12} \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3) = 12 5 log 3 2 + log 3 2 + 2 1 log 3 ( log 2 3 ) = 12 17 log 3 2 + 2 1 log 3 ( log 2 3 ) .
Let us use change of base to base 2
4 log 2 3 = log 2 3 + log 2 3 + log 2 3 + log 2 3 = log 2 3 + log 4 9 + log 8 27 + log 16 81 4 \log_2 3 = \log_2 3 + \log_2 3 + \log_2 3 + \log_2 3 = \log_2 3 + \log_4 9 + \log_8 27 + \log_{16} 81 4 log 2 3 = log 2 3 + log 2 3 + log 2 3 + log 2 3 = log 2 3 + log 4 9 + log 8 27 + log 16 81 So we want to evaluate log 9 32 6 ( 4 log 2 3 ) \log_9 \sqrt[6]{32}(4\log_2 3) log 9 6 32 ( 4 log 2 3 )
Using the change of base formula log b a = log c a log c b \log_b a = \frac{\log_c a}{\log_c b} log b a = l o g c b l o g c a . Then log 9 x = log 3 x log 3 9 = log 3 x 2 \log_9 x = \frac{\log_3 x}{\log_3 9} = \frac{\log_3 x}{2} log 9 x = l o g 3 9 l o g 3 x = 2 l o g 3 x . log 9 32 6 ( 4 log 2 3 ) = log 9 ( 2 5 6 ) ( 4 log 2 3 ) = 1 2 log 3 ( 2 5 6 4 log 2 3 ) \log_9 \sqrt[6]{32} (4\log_2 3) = \log_9 (2^{\frac{5}{6}}) (4\log_2 3) = \frac{1}{2}\log_3 (2^{\frac{5}{6}} 4\log_2 3) log 9 6 32 ( 4 log 2 3 ) = log 9 ( 2 6 5 ) ( 4 log 2 3 ) = 2 1 log 3 ( 2 6 5 4 log 2 3 )
If log 2 3 = x \log_2 3 = x log 2 3 = x , then we have 1 2 log 3 ( 2 5 6 4 x ) = 1 2 log 3 ( 2 5 6 + 2 x ) = 1 2 log 3 ( 2 17 6 x ) \frac{1}{2}\log_3 (2^{\frac{5}{6}} 4x) = \frac{1}{2}\log_3 (2^{\frac{5}{6} + 2} x) = \frac{1}{2}\log_3 (2^{\frac{17}{6}} x) 2 1 log 3 ( 2 6 5 4 x ) = 2 1 log 3 ( 2 6 5 + 2 x ) = 2 1 log 3 ( 2 6 17 x ) = 1 2 [ 17 6 log 3 2 + log 3 x ] = 17 12 log 3 2 + 1 2 log 3 log 2 3 = \frac{1}{2}[\frac{17}{6} \log_3 2 + \log_3 x ] = \frac{17}{12}\log_3 2 + \frac{1}{2} \log_3 \log_2 3 = 2 1 [ 6 17 log 3 2 + log 3 x ] = 12 17 log 3 2 + 2 1 log 3 log 2 3
Let's start with:
log 9 32 6 ( 4 log 2 3 ) = log 9 2 5 6 ( 4 log 2 3 ) = log 9 2 5 6 + log 9 4 log 2 3 = 5 6 log 9 2 + log 9 4 + log 9 log 2 3 = 5 6 log 3 2 2 + log 3 2 4 + log 3 2 log 2 3 \log_9 \sqrt[6]{32} (4\log_2 3) = \log_9 \sqrt[6]{2^5} (4\log_2 3) = \log_9 2^{\frac{5}{6}} + \log_9 4\log_2 3 = \frac{5}{6} \log_9 2 + \log_9 4 + \log_9 \log_2 3 = \frac{5}{6} \log_{3^2} 2 + \log_{3^2} 4 + \log_{3^2} \log_2 3 log 9 6 32 ( 4 log 2 3 ) = log 9 6 2 5 ( 4 log 2 3 ) = log 9 2 6 5 + log 9 4 log 2 3 = 6 5 log 9 2 + log 9 4 + log 9 log 2 3 = 6 5 log 3 2 2 + log 3 2 4 + log 3 2 log 2 3 = 5 12 log 3 2 + 1 2 log 3 4 + 1 2 log 3 log 2 3 = 5 12 log 3 2 + log 3 2 + 1 2 log 3 log 2 3 = 17 12 log 3 2 + 1 2 log 3 log 2 3 = \frac{5}{12} \log_3 2 + \frac{1}{2} \log_3 4 + \frac{1}{2} \log_3 \log_2 3 = \frac{5}{12} \log_3 2 + \log_3 2 + \frac{1}{2} \log_3 \log_2 3 = \frac{17}{12} \log_3 2 + \frac{1}{2} \log_3 \log_2 3 = 12 5 log 3 2 + 2 1 log 3 4 + 2 1 log 3 log 2 3 = 12 5 log 3 2 + log 3 2 + 2 1 log 3 log 2 3 = 12 17 log 3 2 + 2 1 log 3 log 2 3 .
Try converting back to original base 2:
log 2 3 = y \log_2 3 = y log 2 3 = y . log 9 ( 32 6 ) ( 4 y ) = log 3 2 2 5 6 4 y = 1 2 [ log 3 ( 2 5 6 ) + log 3 ( 4 y ) ] = 1 2 [ 5 6 log 3 2 + log 3 4 + log 3 y ] = 1 2 [ 5 6 1 log 2 3 + 2 log 3 2 + log 3 y ] = 1 2 [ 5 6 1 y + 2 y + log 3 y ] \log_9 (\sqrt[6]{32}) (4y) = \log_{3^2} 2^{\frac{5}{6}} 4y = \frac{1}{2} [\log_3 (2^{\frac{5}{6}}) + \log_3 (4y)] = \frac{1}{2} [\frac{5}{6}\log_3 2 + \log_3 4 + \log_3 y] = \frac{1}{2} [\frac{5}{6} \frac{1}{\log_2 3} + 2\log_3 2 + \log_3 y] = \frac{1}{2} [\frac{5}{6} \frac{1}{y} + \frac{2}{y} + \log_3 y ] log 9 ( 6 32 ) ( 4 y ) = log 3 2 2 6 5 4 y = 2 1 [ log 3 ( 2 6 5 ) + log 3 ( 4 y )] = 2 1 [ 6 5 log 3 2 + log 3 4 + log 3 y ] = 2 1 [ 6 5 l o g 2 3 1 + 2 log 3 2 + log 3 y ] = 2 1 [ 6 5 y 1 + y 2 + log 3 y ] = 1 2 [ 5 6 1 log 2 3 + 2 1 log 2 3 + log 3 log 2 3 ] = 17 12 log 3 2 + 1 2 log 3 log 2 3 = \frac{1}{2} [\frac{5}{6} \frac{1}{\log_2 3} + 2 \frac{1}{\log_2 3} + \log_3 \log_2 3] = \frac{17}{12}\log_3 2 + \frac{1}{2}\log_3 \log_2 3 = 2 1 [ 6 5 l o g 2 3 1 + 2 l o g 2 3 1 + log 3 log 2 3 ] = 12 17 log 3 2 + 2 1 log 3 log 2 3 .
32 6 = 32 1 6 = ( 2 5 ) 1 6 = 2 5 6 \sqrt[6]{32} = 32^{\frac{1}{6}} = (2^5)^{\frac{1}{6}} = 2^{\frac{5}{6}} 6 32 = 3 2 6 1 = ( 2 5 ) 6 1 = 2 6 5 .
log 9 ( 32 6 ) = log 9 2 5 6 = 5 6 log 9 2 = 5 6 log 2 2 log 2 9 = 5 6 1 2 log 2 3 = 5 12 1 log 2 3 \log_9 (\sqrt[6]{32}) = \log_9 2^{\frac{5}{6}} = \frac{5}{6} \log_9 2 = \frac{5}{6} \frac{\log_2 2}{\log_2 9} = \frac{5}{6} \frac{1}{2\log_2 3} = \frac{5}{12} \frac{1}{\log_2 3} log 9 ( 6 32 ) = log 9 2 6 5 = 6 5 log 9 2 = 6 5 l o g 2 9 l o g 2 2 = 6 5 2 l o g 2 3 1 = 12 5 l o g 2 3 1
log 9 ( 32 6 ( 4 log 2 3 ) ) = log 9 32 6 + log 9 4 log 2 3 = 5 6 log 9 2 + log 9 ( 4 log 2 3 ) \log_9 (\sqrt[6]{32}(4 \log_2 3)) = \log_9 \sqrt[6]{32} + \log_9 4 \log_2 3 = \frac{5}{6} \log_9 2 + \log_9 (4 \log_2 3) log 9 ( 6 32 ( 4 log 2 3 )) = log 9 6 32 + log 9 4 log 2 3 = 6 5 log 9 2 + log 9 ( 4 log 2 3 ) . = 5 6 log 2 2 log 2 9 + log 2 4 log 2 3 log 2 9 = 5 6 1 2 log 2 3 + log 2 4 + log 2 ( log 2 3 ) 2 log 2 3 = \frac{5}{6} \frac{\log_2 2}{\log_2 9} + \frac{\log_2 4 \log_2 3}{\log_2 9} = \frac{5}{6} \frac{1}{2\log_2 3} + \frac{\log_2 4 + \log_2 (\log_2 3)}{2\log_2 3} = 6 5 l o g 2 9 l o g 2 2 + l o g 2 9 l o g 2 4 l o g 2 3 = 6 5 2 l o g 2 3 1 + 2 l o g 2 3 l o g 2 4 + l o g 2 ( l o g 2 3 ) = 5 12 log 2 3 + 2 + log 2 ( log 2 3 ) 2 log 2 3 = 5 12 log 2 3 + 1 log 2 3 + 1 2 log 2 3 log 2 ( log 2 3 ) = 17 12 log 2 3 + 1 2 log 2 ( log 2 3 ) log 2 3 = \frac{5}{12\log_2 3} + \frac{2 + \log_2(\log_2 3)}{2\log_2 3} = \frac{5}{12 \log_2 3} + \frac{1}{\log_2 3} + \frac{1}{2\log_2 3} \log_2(\log_2 3) = \frac{17}{12 \log_2 3} + \frac{1}{2} \frac{\log_2 (\log_2 3)}{\log_2 3} = 12 l o g 2 3 5 + 2 l o g 2 3 2 + l o g 2 ( l o g 2 3 ) = 12 l o g 2 3 5 + l o g 2 3 1 + 2 l o g 2 3 1 log 2 ( log 2 3 ) = 12 l o g 2 3 17 + 2 1 l o g 2 3 l o g 2 ( l o g 2 3 ) .
log 2 3 > 1 \log_{2} 3 > 1 log 2 3 > 1 . We have log 9 ( 32 6 ⋅ ( 4 log 2 3 ) \log_9 (\sqrt[6]{32} \cdot (4\log_2 3) log 9 ( 6 32 ⋅ ( 4 log 2 3 ) .
Let x = log 2 3 x = \log_2 3 x = log 2 3 , then we have log 9 ( 2 5 6 ⋅ 4 x ) \log_9 (2^{\frac{5}{6}} \cdot 4x) log 9 ( 2 6 5 ⋅ 4 x ) . Then log 3 2 5 6 ⋅ 4 x log 3 9 = 1 2 log 3 ( 2 5 6 ⋅ 4 x ) = 1 2 ( 5 6 log 3 2 + log 3 4 + log 3 x ) = 1 2 ( 5 6 log 3 2 + 2 log 3 2 + log 3 x ) = 1 2 ( 17 6 log 3 2 + log 3 x ) = 17 12 log 3 2 + 1 2 log 3 log 2 3 \frac{\log_3 2^{\frac{5}{6}} \cdot 4x}{\log_3 9} = \frac{1}{2} \log_3 (2^{\frac{5}{6}} \cdot 4x) = \frac{1}{2} (\frac{5}{6} \log_3 2 + \log_3 4 + \log_3 x) = \frac{1}{2}(\frac{5}{6} \log_3 2 + 2\log_3 2 + \log_3 x) = \frac{1}{2} (\frac{17}{6} \log_3 2 + \log_3 x) = \frac{17}{12} \log_3 2 + \frac{1}{2} \log_3 \log_2 3 l o g 3 9 l o g 3 2 6 5 ⋅ 4 x = 2 1 log 3 ( 2 6 5 ⋅ 4 x ) = 2 1 ( 6 5 log 3 2 + log 3 4 + log 3 x ) = 2 1 ( 6 5 log 3 2 + 2 log 3 2 + log 3 x ) = 2 1 ( 6 17 log 3 2 + log 3 x ) = 12 17 log 3 2 + 2 1 log 3 log 2 3 .
If log 2 3 = 1.58 \log_2 3 = 1.58 log 2 3 = 1.58 , so 17 12 ( .63 ) + 1 2 ( − .273 ) ≈ 17 12 ( .63 ) − 0.13 = 0.8925 − 0.13 = 0.7625 \frac{17}{12} (.63) + \frac{1}{2} (-.273) \approx \frac{17}{12}(.63) - 0.13 = 0.8925 - 0.13 = 0.7625 12 17 ( .63 ) + 2 1 ( − .273 ) ≈ 12 17 ( .63 ) − 0.13 = 0.8925 − 0.13 = 0.7625 . The options are 5 3 = 1.67 \frac{5}{3} = 1.67 3 5 = 1.67 , 3 2 = 1.5 \frac{3}{2} = 1.5 2 3 = 1.5 , 3 4 = 0.75 \frac{3}{4} = 0.75 4 3 = 0.75 , 1 1 1 .
Final Solution: The final answer is 1 \boxed{1} 1