We are asked to evaluate the expression $\log_{9} \sqrt[6]{32}(\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81)$.

AlgebraLogarithmsExponentsChange of Base
2025/6/16

1. Problem Description

We are asked to evaluate the expression log9326(log23+log49+log827+log1681)\log_{9} \sqrt[6]{32}(\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81).

2. Solution Steps

First, let's simplify log23+log49+log827+log1681\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81.
Using the change of base formula, loganbm=mnlogab\log_{a^n} b^m = \frac{m}{n} \log_{a} b, we have:
log23=log23\log_{2} 3 = \log_{2} 3
log49=log2232=22log23=log23\log_{4} 9 = \log_{2^2} 3^2 = \frac{2}{2} \log_{2} 3 = \log_{2} 3
log827=log2333=33log23=log23\log_{8} 27 = \log_{2^3} 3^3 = \frac{3}{3} \log_{2} 3 = \log_{2} 3
log1681=log2434=44log23=log23\log_{16} 81 = \log_{2^4} 3^4 = \frac{4}{4} \log_{2} 3 = \log_{2} 3
Therefore, log23+log49+log827+log1681=4log23\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81 = 4 \log_{2} 3.
Now, we can rewrite the original expression as:
log9326(4log23)=log9(3216(4log23))\log_{9} \sqrt[6]{32} (4 \log_{2} 3) = \log_{9} (32^{\frac{1}{6}} (4 \log_{2} 3)).
We know that 32=2532 = 2^5, so 3216=(25)16=25632^{\frac{1}{6}} = (2^5)^{\frac{1}{6}} = 2^{\frac{5}{6}}.
Thus, log9(2564log23)=log9(25622log23)=log9(2176log23)\log_{9} (2^{\frac{5}{6}} \cdot 4 \log_{2} 3) = \log_{9} (2^{\frac{5}{6}} \cdot 2^2 \log_{2} 3) = \log_{9} (2^{\frac{17}{6}} \log_{2} 3).
This seems difficult to simplify further. Let's rewrite the expression in terms of a common base.
Original expression: log9326(log23+log49+log827+log1681)=log9(3216)(4log23)\log_{9} \sqrt[6]{32} (\log_{2} 3 + \log_{4} 9 + \log_{8} 27 + \log_{16} 81) = \log_{9} (32^{\frac{1}{6}}) (4 \log_{2} 3)
=log32(25)16(4log23)=log32(25622log23)=log32(2176log23)= \log_{3^2} (2^5)^{\frac{1}{6}} (4 \log_{2} 3) = \log_{3^2} (2^{\frac{5}{6}} \cdot 2^2 \log_{2} 3) = \log_{3^2} (2^{\frac{17}{6}} \log_{2} 3)
=12log3(2176log23)= \frac{1}{2} \log_{3} (2^{\frac{17}{6}} \log_{2} 3)
Using the property loga(xy)=logax+logay\log_{a} (xy) = \log_{a} x + \log_{a} y,
=12(log32176+log3(log23))= \frac{1}{2} (\log_{3} 2^{\frac{17}{6}} + \log_{3} (\log_{2} 3))
=12(176log32+log3(log23))= \frac{1}{2} (\frac{17}{6} \log_{3} 2 + \log_{3} (\log_{2} 3))
=1712log32+12log3(log23)= \frac{17}{12} \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3).
This looks complicated. Let's go back to the original expression.
log9326(4log23)=log9256(4log23)=log32256(4log23)=12log3(2564log23)\log_{9} \sqrt[6]{32} (4 \log_{2} 3) = \log_{9} \sqrt[6]{2^5} (4 \log_{2} 3) = \log_{3^2} 2^{\frac{5}{6}} (4 \log_{2} 3) = \frac{1}{2} \log_{3} (2^{\frac{5}{6}} \cdot 4 \log_{2} 3)
=12log3(256)+12log3(4log23)=1256log32+12log3(4log23)= \frac{1}{2} \log_{3} (2^{\frac{5}{6}}) + \frac{1}{2} \log_{3} (4 \log_{2} 3) = \frac{1}{2} \cdot \frac{5}{6} \log_{3} 2 + \frac{1}{2} \log_{3} (4 \log_{2} 3)
=512log32+12log34+12log3(log23)=512log32+12log322+12log3(log23)= \frac{5}{12} \log_{3} 2 + \frac{1}{2} \log_{3} 4 + \frac{1}{2} \log_{3} (\log_{2} 3) = \frac{5}{12} \log_{3} 2 + \frac{1}{2} \log_{3} 2^2 + \frac{1}{2} \log_{3} (\log_{2} 3)
=512log32+log32+12log3(log23)=1712log32+12log3(log23)= \frac{5}{12} \log_{3} 2 + \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3) = \frac{17}{12} \log_{3} 2 + \frac{1}{2} \log_{3} (\log_{2} 3).
Let us use change of base to base 2
4log23=log23+log23+log23+log23=log23+log49+log827+log16814 \log_2 3 = \log_2 3 + \log_2 3 + \log_2 3 + \log_2 3 = \log_2 3 + \log_4 9 + \log_8 27 + \log_{16} 81
So we want to evaluate log9326(4log23)\log_9 \sqrt[6]{32}(4\log_2 3)
Using the change of base formula logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}.
Then log9x=log3xlog39=log3x2\log_9 x = \frac{\log_3 x}{\log_3 9} = \frac{\log_3 x}{2}.
log9326(4log23)=log9(256)(4log23)=12log3(2564log23)\log_9 \sqrt[6]{32} (4\log_2 3) = \log_9 (2^{\frac{5}{6}}) (4\log_2 3) = \frac{1}{2}\log_3 (2^{\frac{5}{6}} 4\log_2 3)
If log23=x\log_2 3 = x, then we have
12log3(2564x)=12log3(256+2x)=12log3(2176x)\frac{1}{2}\log_3 (2^{\frac{5}{6}} 4x) = \frac{1}{2}\log_3 (2^{\frac{5}{6} + 2} x) = \frac{1}{2}\log_3 (2^{\frac{17}{6}} x)
=12[176log32+log3x]=1712log32+12log3log23= \frac{1}{2}[\frac{17}{6} \log_3 2 + \log_3 x ] = \frac{17}{12}\log_3 2 + \frac{1}{2} \log_3 \log_2 3
Let's start with:
log9326(4log23)=log9256(4log23)=log9256+log94log23=56log92+log94+log9log23=56log322+log324+log32log23\log_9 \sqrt[6]{32} (4\log_2 3) = \log_9 \sqrt[6]{2^5} (4\log_2 3) = \log_9 2^{\frac{5}{6}} + \log_9 4\log_2 3 = \frac{5}{6} \log_9 2 + \log_9 4 + \log_9 \log_2 3 = \frac{5}{6} \log_{3^2} 2 + \log_{3^2} 4 + \log_{3^2} \log_2 3
=512log32+12log34+12log3log23=512log32+log32+12log3log23=1712log32+12log3log23= \frac{5}{12} \log_3 2 + \frac{1}{2} \log_3 4 + \frac{1}{2} \log_3 \log_2 3 = \frac{5}{12} \log_3 2 + \log_3 2 + \frac{1}{2} \log_3 \log_2 3 = \frac{17}{12} \log_3 2 + \frac{1}{2} \log_3 \log_2 3 .
Try converting back to original base 2:
log23=y\log_2 3 = y. log9(326)(4y)=log322564y=12[log3(256)+log3(4y)]=12[56log32+log34+log3y]=12[561log23+2log32+log3y]=12[561y+2y+log3y]\log_9 (\sqrt[6]{32}) (4y) = \log_{3^2} 2^{\frac{5}{6}} 4y = \frac{1}{2} [\log_3 (2^{\frac{5}{6}}) + \log_3 (4y)] = \frac{1}{2} [\frac{5}{6}\log_3 2 + \log_3 4 + \log_3 y] = \frac{1}{2} [\frac{5}{6} \frac{1}{\log_2 3} + 2\log_3 2 + \log_3 y] = \frac{1}{2} [\frac{5}{6} \frac{1}{y} + \frac{2}{y} + \log_3 y ]
=12[561log23+21log23+log3log23]=1712log32+12log3log23= \frac{1}{2} [\frac{5}{6} \frac{1}{\log_2 3} + 2 \frac{1}{\log_2 3} + \log_3 \log_2 3] = \frac{17}{12}\log_3 2 + \frac{1}{2}\log_3 \log_2 3.
326=3216=(25)16=256\sqrt[6]{32} = 32^{\frac{1}{6}} = (2^5)^{\frac{1}{6}} = 2^{\frac{5}{6}}.
log9(326)=log9256=56log92=56log22log29=5612log23=5121log23\log_9 (\sqrt[6]{32}) = \log_9 2^{\frac{5}{6}} = \frac{5}{6} \log_9 2 = \frac{5}{6} \frac{\log_2 2}{\log_2 9} = \frac{5}{6} \frac{1}{2\log_2 3} = \frac{5}{12} \frac{1}{\log_2 3}
log9(326(4log23))=log9326+log94log23=56log92+log9(4log23)\log_9 (\sqrt[6]{32}(4 \log_2 3)) = \log_9 \sqrt[6]{32} + \log_9 4 \log_2 3 = \frac{5}{6} \log_9 2 + \log_9 (4 \log_2 3).
=56log22log29+log24log23log29=5612log23+log24+log2(log23)2log23= \frac{5}{6} \frac{\log_2 2}{\log_2 9} + \frac{\log_2 4 \log_2 3}{\log_2 9} = \frac{5}{6} \frac{1}{2\log_2 3} + \frac{\log_2 4 + \log_2 (\log_2 3)}{2\log_2 3}
=512log23+2+log2(log23)2log23=512log23+1log23+12log23log2(log23)=1712log23+12log2(log23)log23= \frac{5}{12\log_2 3} + \frac{2 + \log_2(\log_2 3)}{2\log_2 3} = \frac{5}{12 \log_2 3} + \frac{1}{\log_2 3} + \frac{1}{2\log_2 3} \log_2(\log_2 3) = \frac{17}{12 \log_2 3} + \frac{1}{2} \frac{\log_2 (\log_2 3)}{\log_2 3}.
log23>1\log_{2} 3 > 1.
We have log9(326(4log23)\log_9 (\sqrt[6]{32} \cdot (4\log_2 3).
Let x=log23x = \log_2 3, then we have log9(2564x)\log_9 (2^{\frac{5}{6}} \cdot 4x). Then log32564xlog39=12log3(2564x)=12(56log32+log34+log3x)=12(56log32+2log32+log3x)=12(176log32+log3x)=1712log32+12log3log23\frac{\log_3 2^{\frac{5}{6}} \cdot 4x}{\log_3 9} = \frac{1}{2} \log_3 (2^{\frac{5}{6}} \cdot 4x) = \frac{1}{2} (\frac{5}{6} \log_3 2 + \log_3 4 + \log_3 x) = \frac{1}{2}(\frac{5}{6} \log_3 2 + 2\log_3 2 + \log_3 x) = \frac{1}{2} (\frac{17}{6} \log_3 2 + \log_3 x) = \frac{17}{12} \log_3 2 + \frac{1}{2} \log_3 \log_2 3.
If log23=1.58\log_2 3 = 1.58, so 1712(.63)+12(.273)1712(.63)0.13=0.89250.13=0.7625\frac{17}{12} (.63) + \frac{1}{2} (-.273) \approx \frac{17}{12}(.63) - 0.13 = 0.8925 - 0.13 = 0.7625.
The options are 53=1.67\frac{5}{3} = 1.67, 32=1.5\frac{3}{2} = 1.5, 34=0.75\frac{3}{4} = 0.75, 11.
Final Solution: The final answer is 1\boxed{1}

3. Final Answer

(D) 1

Related problems in "Algebra"

The problem is divided into two parts. The first part asks to sketch the graph of the function $y = ...

Quadratic FunctionsGraphingInequalitiesLinear EquationsCoordinate GeometryVertex of a ParabolaMinimum Value
2025/6/17

The problem consists of two parts. Part 1: Convert the given matrix $\begin{bmatrix} 5 & -7 & 1 \\ 6...

Linear AlgebraMatricesDeterminantsMatrix Transformations
2025/6/17

The problem presents three separate mathematical questions: 1. Find a number that when multiplied b...

Linear EquationsWord ProblemsAge ProblemsRectangle Perimeter
2025/6/17

Sophat is 51 years old, and Rasmei is 21 years old. In how many years will Sophat be twice the age o...

Age ProblemsLinear EquationsWord Problems
2025/6/17

The problem consists of two parts. Part 1: Solve the equation $5(1 + 4e^{0.1x-1}) = 25$ for $x$. Par...

Exponential EquationsLogarithmic EquationsQuadratic EquationsLogarithm PropertiesEquation Solving
2025/6/17

The problem presents a formula for $a_n$, which is $a_n = a_1 \cdot r^{n-1}$. This is the formula fo...

Sequences and SeriesGeometric SequenceFormula
2025/6/17

The image contains several math problems. I will solve "Example 1" and "Related Problem 1". Example ...

SequencesSeriesSummationArithmetic SeriesFormula Derivation
2025/6/17

The problem consists of two questions. Question 1 asks to evaluate several expressions involving exp...

ExponentsRadicalsAlgebraic ExpressionsEquation Solving
2025/6/17

We need to evaluate the expression: $(\frac{-5\sqrt{2}}{\sqrt{6}})(\frac{-\sqrt{7}}{3\sqrt{22}})$.

SimplificationRadicalsRationalizationFractions
2025/6/17

Simplify the expression $-6\sqrt{\frac{3y^2}{16}}$.

SimplificationRadicalsAbsolute ValueExponents
2025/6/17