画像に書かれた式 $(1+2+3+A)^T$ を計算します。ただし、$A$ は変数です。

代数学代数変数計算転置
2025/6/17

1. 問題の内容

画像に書かれた式 (1+2+3+A)T(1+2+3+A)^T を計算します。ただし、AA は変数です。

2. 解き方の手順

まず、括弧の中を計算します。
1+2+3=61 + 2 + 3 = 6
したがって、括弧の中は 6+A6 + A となります。
次に、T乗を計算します。これは転置を表す記号であると仮定します。ただし、今回はベクトルや行列ではなくスカラーであるため、転置を行っても値は変わりません。
したがって、 (6+A)T=6+A(6 + A)^T = 6 + A となります。

3. 最終的な答え

6+A6 + A

「代数学」の関連問題

与えられた二次方程式 $4x^2 - x - 2 = 0$ の解を、選択肢の中から選び出す問題です。

二次方程式解の公式根の公式
2025/6/17

与えられた2次方程式 $x^2 + 9x = 0$ を解き、$x$の値を求めよ。

二次方程式因数分解方程式の解
2025/6/17

与えられた連立不等式を解きます。連立不等式は以下の通りです。 $\begin{cases} 2(1-x)-5 < 3x + 7 \\ \frac{x-6}{7} \le \frac{x-5}{5} \...

不等式連立不等式一次不等式
2025/6/17

2次方程式 $x^2 + x - 2 = 0$ を解き、解を求める問題です。

二次方程式因数分解方程式解の公式
2025/6/17

二次方程式 $x^2 - 8x + 16 = 0$ を解き、$x$ の値を求めます。

二次方程式因数分解解の公式
2025/6/17

二次方程式 $x^2 + 10x + 21 = 0$ を解き、その解 $x$ を求める問題です。

二次方程式因数分解解の公式
2025/6/17

次の連立不等式を解きます。 $ \begin{cases} 3x+5 \geq 4(x+2) \\ 4x+5 \geq 2x-3 \end{cases} $

連立不等式一次不等式不等式
2025/6/17

与えられた不等式 $\frac{1}{2}x - 1 \leq \frac{2}{7}x + \frac{1}{2}$ を解き、$x$ の範囲を求めます。

不等式一次不等式計算
2025/6/17

与えられた不等式 $|x-3| \geq 5$ を解く問題です。絶対値を含む不等式を解く必要があります。

絶対値不等式不等式を解く
2025/6/17

2つの問題があります。 1つ目は、$29x = 168 + \Box$において、$\Box$を求める問題です。ただし、$x$は2つ目の問題から求めます。 2つ目は、$24 \div 16 = \Box...

一次方程式計算数値計算
2025/6/17