関数 $y = -5 \cos x$ の導関数 $y'$ が $y' = a \sin x$ で与えられるとき、$a$ の値を求める。

解析学微分三角関数導関数
2025/6/20

1. 問題の内容

関数 y=5cosxy = -5 \cos x の導関数 yy'y=asinxy' = a \sin x で与えられるとき、aa の値を求める。

2. 解き方の手順

関数 y=5cosxy = -5 \cos xxx で微分する。
cosx\cos x の微分は sinx-\sin x であることを利用する。
y=ddx(5cosx)=5ddx(cosx)=5(sinx)=5sinxy' = \frac{d}{dx}(-5 \cos x) = -5 \frac{d}{dx}(\cos x) = -5 (-\sin x) = 5 \sin x
y=asinxy' = a \sin xy=5sinxy' = 5 \sin x を比較すると、a=5a = 5 であることがわかる。

3. 最終的な答え

a=5a = 5

「解析学」の関連問題

座標平面上に放物線 $C: y=x^2$ がある。$C$ 上の点 $P(p, p^2)$ (ただし $p > 0$) における $C$ の接線を $l_1$, $P$ を通り $l_1$ に垂直な直線...

微分積分接線面積放物線
2025/6/20

座標平面上に放物線 $C: y=x^2$ があり、$C$ 上の点 $P(p, p^2)$ がある(ただし、$p > 0$)。$P$ における $C$ の接線を $l_1$、$P$ を通り $l_1$ ...

接線積分面積微分放物線
2025/6/20

(1) 曲線 $y = -x^4 + 3x + 1$ 上の点 $(2, -9)$ における接線の方程式を求める。 (2) 直線 $y = kx$ が曲線 $y = x^3 - x - 2$ の接線とな...

微分接線導関数方程式
2025/6/20

$\frac{1}{2r^2}$ を積分する問題です。積分変数が不明なので、ここでは $r$ で積分するものとします。

積分定積分不定積分積分計算
2025/6/20

与えられた12個の関数 $f(x)$ それぞれについて、導関数 $f'(x)$ を求める問題です。

微分導関数関数の微分
2025/6/20

関数 $y = \tan x$ のマクローリン展開を $n=4$ まで行ったときの式が与えられており、その式の中の(ア)、(イ)、(ウ)に当てはまる数字を求める問題です。式は以下の通りです。 $y =...

マクローリン展開テイラー展開三角関数微分剰余項
2025/6/20

与えられた9つの関数 $f(x)$ に対して、それぞれの導関数 $f'(x)$ を求める問題です。

導関数微分商の微分公式積の微分公式合成関数の微分
2025/6/20

関数 $f(x) = x^3 - 2x$ について、以下の問いに答えます。 (1) $x$ が 1 から 4 まで変化するときの平均変化率を求めます。 (2) $x=2$ における微分係数を、定義にし...

微分平均変化率微分係数導関数関数の極限
2025/6/20

関数 $y = \cos x$ の $n=4$ のマクローリン展開を求め、与えられた式 $y = 1 - \frac{x^2}{\boxed{ア}!} + \frac{\boxed{イ}\cos(\t...

マクローリン展開テイラー展開三角関数剰余項
2025/6/20

極限 $I = \lim_{x \to 2} \frac{\log(3x-5)}{x^2 - 4}$ を求める問題です。ロピタルの定理を使用する場合は、その条件を満たしていることを明記する必要がありま...

極限ロピタルの定理微分対数関数
2025/6/20