与えられた9つの2次方程式を解く問題です。代数学二次方程式解の公式複素数2025/6/221. 問題の内容与えられた9つの2次方程式を解く問題です。2. 解き方の手順2次方程式 ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 の解は、解の公式を用いて求められます。解の公式は次の通りです。x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4ac各方程式について、a,b,ca, b, ca,b,c の値を特定し、解の公式に代入して解を求めます。(1) x2+x+5=0x^2 + x + 5 = 0x2+x+5=0a=1,b=1,c=5a = 1, b = 1, c = 5a=1,b=1,c=5x=−1±12−4(1)(5)2(1)=−1±1−202=−1±−192=−1±i192x = \frac{-1 \pm \sqrt{1^2 - 4(1)(5)}}{2(1)} = \frac{-1 \pm \sqrt{1 - 20}}{2} = \frac{-1 \pm \sqrt{-19}}{2} = \frac{-1 \pm i\sqrt{19}}{2}x=2(1)−1±12−4(1)(5)=2−1±1−20=2−1±−19=2−1±i19(2) x2−3x+9=0x^2 - 3x + 9 = 0x2−3x+9=0a=1,b=−3,c=9a = 1, b = -3, c = 9a=1,b=−3,c=9x=3±(−3)2−4(1)(9)2(1)=3±9−362=3±−272=3±3i32x = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(9)}}{2(1)} = \frac{3 \pm \sqrt{9 - 36}}{2} = \frac{3 \pm \sqrt{-27}}{2} = \frac{3 \pm 3i\sqrt{3}}{2}x=2(1)3±(−3)2−4(1)(9)=23±9−36=23±−27=23±3i3(3) 3x2+2x−5=03x^2 + 2x - 5 = 03x2+2x−5=0a=3,b=2,c=−5a = 3, b = 2, c = -5a=3,b=2,c=−5x=−2±22−4(3)(−5)2(3)=−2±4+606=−2±646=−2±86x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-5)}}{2(3)} = \frac{-2 \pm \sqrt{4 + 60}}{6} = \frac{-2 \pm \sqrt{64}}{6} = \frac{-2 \pm 8}{6}x=2(3)−2±22−4(3)(−5)=6−2±4+60=6−2±64=6−2±8x=−2+86=66=1x = \frac{-2 + 8}{6} = \frac{6}{6} = 1x=6−2+8=66=1x=−2−86=−106=−53x = \frac{-2 - 8}{6} = \frac{-10}{6} = -\frac{5}{3}x=6−2−8=6−10=−35(4) x2−3x−1=0x^2 - 3x - 1 = 0x2−3x−1=0a=1,b=−3,c=−1a = 1, b = -3, c = -1a=1,b=−3,c=−1x=3±(−3)2−4(1)(−1)2(1)=3±9+42=3±132x = \frac{3 \pm \sqrt{(-3)^2 - 4(1)(-1)}}{2(1)} = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2}x=2(1)3±(−3)2−4(1)(−1)=23±9+4=23±13(5) 2x2+4x+3=02x^2 + 4x + 3 = 02x2+4x+3=0a=2,b=4,c=3a = 2, b = 4, c = 3a=2,b=4,c=3x=−4±42−4(2)(3)2(2)=−4±16−244=−4±−84=−4±2i24=−1±i22x = \frac{-4 \pm \sqrt{4^2 - 4(2)(3)}}{2(2)} = \frac{-4 \pm \sqrt{16 - 24}}{4} = \frac{-4 \pm \sqrt{-8}}{4} = \frac{-4 \pm 2i\sqrt{2}}{4} = -1 \pm \frac{i\sqrt{2}}{2}x=2(2)−4±42−4(2)(3)=4−4±16−24=4−4±−8=4−4±2i2=−1±2i2(6) −3x2+2x+2=0-3x^2 + 2x + 2 = 0−3x2+2x+2=0a=−3,b=2,c=2a = -3, b = 2, c = 2a=−3,b=2,c=2x=−2±22−4(−3)(2)2(−3)=−2±4+24−6=−2±28−6=−2±27−6=1∓73x = \frac{-2 \pm \sqrt{2^2 - 4(-3)(2)}}{2(-3)} = \frac{-2 \pm \sqrt{4 + 24}}{-6} = \frac{-2 \pm \sqrt{28}}{-6} = \frac{-2 \pm 2\sqrt{7}}{-6} = \frac{1 \mp \sqrt{7}}{3}x=2(−3)−2±22−4(−3)(2)=−6−2±4+24=−6−2±28=−6−2±27=31∓7(7) 5x2+3x+2=05x^2 + 3x + 2 = 05x2+3x+2=0a=5,b=3,c=2a = 5, b = 3, c = 2a=5,b=3,c=2x=−3±32−4(5)(2)2(5)=−3±9−4010=−3±−3110=−3±i3110x = \frac{-3 \pm \sqrt{3^2 - 4(5)(2)}}{2(5)} = \frac{-3 \pm \sqrt{9 - 40}}{10} = \frac{-3 \pm \sqrt{-31}}{10} = \frac{-3 \pm i\sqrt{31}}{10}x=2(5)−3±32−4(5)(2)=10−3±9−40=10−3±−31=10−3±i31(8) x2−5x+2=0x^2 - \sqrt{5}x + 2 = 0x2−5x+2=0a=1,b=−5,c=2a = 1, b = -\sqrt{5}, c = 2a=1,b=−5,c=2x=5±(−5)2−4(1)(2)2(1)=5±5−82=5±−32=5±i32x = \frac{\sqrt{5} \pm \sqrt{(-\sqrt{5})^2 - 4(1)(2)}}{2(1)} = \frac{\sqrt{5} \pm \sqrt{5 - 8}}{2} = \frac{\sqrt{5} \pm \sqrt{-3}}{2} = \frac{\sqrt{5} \pm i\sqrt{3}}{2}x=2(1)5±(−5)2−4(1)(2)=25±5−8=25±−3=25±i3(9) 2x2+43x+7=02x^2 + 4\sqrt{3}x + 7 = 02x2+43x+7=0a=2,b=43,c=7a = 2, b = 4\sqrt{3}, c = 7a=2,b=43,c=7x=−43±(43)2−4(2)(7)2(2)=−43±48−564=−43±−84=−43±2i24=−3±i22x = \frac{-4\sqrt{3} \pm \sqrt{(4\sqrt{3})^2 - 4(2)(7)}}{2(2)} = \frac{-4\sqrt{3} \pm \sqrt{48 - 56}}{4} = \frac{-4\sqrt{3} \pm \sqrt{-8}}{4} = \frac{-4\sqrt{3} \pm 2i\sqrt{2}}{4} = -\sqrt{3} \pm \frac{i\sqrt{2}}{2}x=2(2)−43±(43)2−4(2)(7)=4−43±48−56=4−43±−8=4−43±2i2=−3±2i23. 最終的な答え(1) x=−1±i192x = \frac{-1 \pm i\sqrt{19}}{2}x=2−1±i19(2) x=3±3i32x = \frac{3 \pm 3i\sqrt{3}}{2}x=23±3i3(3) x=1,−53x = 1, -\frac{5}{3}x=1,−35(4) x=3±132x = \frac{3 \pm \sqrt{13}}{2}x=23±13(5) x=−1±i22x = -1 \pm \frac{i\sqrt{2}}{2}x=−1±2i2(6) x=1∓73x = \frac{1 \mp \sqrt{7}}{3}x=31∓7(7) x=−3±i3110x = \frac{-3 \pm i\sqrt{31}}{10}x=10−3±i31(8) x=5±i32x = \frac{\sqrt{5} \pm i\sqrt{3}}{2}x=25±i3(9) x=−3±i22x = -\sqrt{3} \pm \frac{i\sqrt{2}}{2}x=−3±2i2