与えられた数列の和を求めます。数列は $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \dots + n(n+1)(n+2)$ で表されます。代数学数列シグマ和展開公式2025/6/231. 問題の内容与えられた数列の和を求めます。数列は 1⋅2⋅3+2⋅3⋅4+3⋅4⋅5+⋯+n(n+1)(n+2)1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \dots + n(n+1)(n+2)1⋅2⋅3+2⋅3⋅4+3⋅4⋅5+⋯+n(n+1)(n+2) で表されます。2. 解き方の手順この和を求めるために、∑k=1nk(k+1)(k+2)\sum_{k=1}^{n} k(k+1)(k+2)∑k=1nk(k+1)(k+2) を計算します。まず、k(k+1)(k+2)k(k+1)(k+2)k(k+1)(k+2) を展開します。k(k+1)(k+2)=k(k2+3k+2)=k3+3k2+2kk(k+1)(k+2) = k(k^2 + 3k + 2) = k^3 + 3k^2 + 2kk(k+1)(k+2)=k(k2+3k+2)=k3+3k2+2kしたがって、∑k=1nk(k+1)(k+2)=∑k=1n(k3+3k2+2k)=∑k=1nk3+3∑k=1nk2+2∑k=1nk\sum_{k=1}^{n} k(k+1)(k+2) = \sum_{k=1}^{n} (k^3 + 3k^2 + 2k) = \sum_{k=1}^{n} k^3 + 3\sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k∑k=1nk(k+1)(k+2)=∑k=1n(k3+3k2+2k)=∑k=1nk3+3∑k=1nk2+2∑k=1nk∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2これらを代入すると、∑k=1nk3+3∑k=1nk2+2∑k=1nk=n2(n+1)24+3n(n+1)(2n+1)6+2n(n+1)2\sum_{k=1}^{n} k^3 + 3\sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k = \frac{n^2(n+1)^2}{4} + 3\frac{n(n+1)(2n+1)}{6} + 2\frac{n(n+1)}{2}∑k=1nk3+3∑k=1nk2+2∑k=1nk=4n2(n+1)2+36n(n+1)(2n+1)+22n(n+1)=n2(n+1)24+n(n+1)(2n+1)2+n(n+1)= \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{2} + n(n+1)=4n2(n+1)2+2n(n+1)(2n+1)+n(n+1)=n(n+1)4[n(n+1)+2(2n+1)+4]= \frac{n(n+1)}{4} [n(n+1) + 2(2n+1) + 4]=4n(n+1)[n(n+1)+2(2n+1)+4]=n(n+1)4[n2+n+4n+2+4]= \frac{n(n+1)}{4} [n^2 + n + 4n + 2 + 4]=4n(n+1)[n2+n+4n+2+4]=n(n+1)4[n2+5n+6]= \frac{n(n+1)}{4} [n^2 + 5n + 6]=4n(n+1)[n2+5n+6]=n(n+1)(n2+5n+6)4= \frac{n(n+1)(n^2 + 5n + 6)}{4}=4n(n+1)(n2+5n+6)=n(n+1)(n+2)(n+3)4= \frac{n(n+1)(n+2)(n+3)}{4}=4n(n+1)(n+2)(n+3)3. 最終的な答えn(n+1)(n+2)(n+3)4\frac{n(n+1)(n+2)(n+3)}{4}4n(n+1)(n+2)(n+3)