複素数平面上の点 $P(Z)$ が与えられており、その点の複素数 $Z = a + bi$ を求めます。ここで、$a$ は実部、$b$ は虚部に対応します。グラフから $a$ と $b$ の値を読み取ります。
2025/3/29
1. 問題の内容
複素数平面上の点 が与えられており、その点の複素数 を求めます。ここで、 は実部、 は虚部に対応します。グラフから と の値を読み取ります。
2. 解き方の手順
複素数平面において、横軸(x軸)は実軸、縦軸(y軸)は虚軸を表します。点 の座標は、実軸上で3、虚軸上で2です。したがって、 の実部は3、虚部は2となります。よって、 です。
3. 最終的な答え
ア: 3
イ: 2