ある数 $x$ の80%が、$x$ から12を引いた数と等しいとき、$x$ の値を求める問題です。

代数学方程式割合一次方程式
2025/6/30

1. 問題の内容

ある数 xx の80%が、xx から12を引いた数と等しいとき、xx の値を求める問題です。

2. 解き方の手順

まず、問題文を数式で表します。
xx の80%は 0.8x0.8x と表せます。
xx から12を引いた数は x12x - 12 と表せます。
したがって、問題文は次の式で表されます。
0.8x=x120.8x = x - 12
次に、この式を解きます。まず、xx を一方の辺に集めます。両辺から xx を引くと、
0.8xx=x12x0.8x - x = x - 12 - x
0.2x=12-0.2x = -12
次に、xx の係数である 0.2-0.2 で両辺を割ります。
0.2x0.2=120.2\frac{-0.2x}{-0.2} = \frac{-12}{-0.2}
x=60x = 60

3. 最終的な答え

x=60x = 60

「代数学」の関連問題

数列 $\{a_n\}$ が $a_1 = 1$ と漸化式 $a_{n+1} = -2a_n - 1$ $(n = 1, 2, 3, \dots)$ で定められているとき、数列 $\{a_n\}$ の...

数列漸化式等比数列一般項
2025/6/30

与えられた6つの二次方程式について、判別式を用いて解の種類(異なる2つの実数解、重解、異なる2つの虚数解)を判別する問題です。

二次方程式判別式解の判別
2025/6/30

P, Q, Rの3人で友人のお祝いをすることになり、Pが食事代を、Qがプレゼント代を支払った。食事代とプレゼント代を3等分することにし、RがPに3800円、Qに2000円を支払って清算した。このとき、...

連立方程式文章問題代金計算
2025/6/30

与えられた二次方程式 $5x^2 - 4\sqrt{5}x + 4 = 0$ を解く問題です。

二次方程式因数分解平方根解の公式
2025/6/30

数列 $\{a_n\}$ が $a_1 = 2, \frac{a_{n+1}}{n+1} - 3\frac{a_n}{n} = 2$ で定義されるとき、$\frac{a_n}{n} = b_n$ とお...

数列漸化式等比数列一般項
2025/6/30

ある集会で、参加者が長いすに4人ずつ座ると4人が座れなくなる。5人ずつ座ると最後の長いすには4人が座ることになり、長いすが5脚余る。このとき、長いすの数を求めなさい。

方程式文章題連立方程式
2025/6/30

花束を何人かで共同購入する。小サイズの花束を購入する場合、一人1000円ずつ集めると750円余る。小サイズの2倍の値段の大サイズの花束を購入する場合、一人1800円ずつ集めると300円余る。このとき、...

方程式文章問題連立方程式
2025/6/30

与えられた式を計算して簡略化します。式は次の通りです。 $\frac{3\sqrt{5} - 5\sqrt{3}}{\sqrt{5} + \sqrt{3}} + \frac{3\sqrt{5} + 4...

式の計算有理化根号
2025/6/30

初項 $a_1 = 1$ で、漸化式 $a_{n+1} = 2a_n + 3$ ($n=1, 2, 3, ...$) で定義される数列 $\{a_n\}$ の一般項を求める。

数列漸化式等比数列特性方程式
2025/6/30

$xy$平面において、連立不等式 $\begin{cases} |x-y| \le 2 \\ (x-2)(x+3y-2) \le 0 \end{cases}$ が表す領域を$D$とする。 (1) 領域...

不等式領域図示距離最大・最小
2025/6/30