与えられた数列の和 $\sum_{k=1}^{n} (2k^2 - 4k + 3)$ を計算します。代数学数列シグマ公式適用2025/6/271. 問題の内容与えられた数列の和 ∑k=1n(2k2−4k+3)\sum_{k=1}^{n} (2k^2 - 4k + 3)∑k=1n(2k2−4k+3) を計算します。2. 解き方の手順まず、和を分解します。∑k=1n(2k2−4k+3)=2∑k=1nk2−4∑k=1nk+3∑k=1n1\sum_{k=1}^{n} (2k^2 - 4k + 3) = 2 \sum_{k=1}^{n} k^2 - 4 \sum_{k=1}^{n} k + 3 \sum_{k=1}^{n} 1∑k=1n(2k2−4k+3)=2∑k=1nk2−4∑k=1nk+3∑k=1n1次に、それぞれの和の公式を適用します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入すると、2∑k=1nk2−4∑k=1nk+3∑k=1n1=2⋅n(n+1)(2n+1)6−4⋅n(n+1)2+3n2 \sum_{k=1}^{n} k^2 - 4 \sum_{k=1}^{n} k + 3 \sum_{k=1}^{n} 1 = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + 3n2∑k=1nk2−4∑k=1nk+3∑k=1n1=2⋅6n(n+1)(2n+1)−4⋅2n(n+1)+3n=n(n+1)(2n+1)3−2n(n+1)+3n= \frac{n(n+1)(2n+1)}{3} - 2n(n+1) + 3n=3n(n+1)(2n+1)−2n(n+1)+3n=n(n+1)(2n+1)−6n(n+1)+9n3= \frac{n(n+1)(2n+1) - 6n(n+1) + 9n}{3}=3n(n+1)(2n+1)−6n(n+1)+9n=n[(n+1)(2n+1)−6(n+1)+9]3= \frac{n[(n+1)(2n+1) - 6(n+1) + 9]}{3}=3n[(n+1)(2n+1)−6(n+1)+9]=n[2n2+3n+1−6n−6+9]3= \frac{n[2n^2 + 3n + 1 - 6n - 6 + 9]}{3}=3n[2n2+3n+1−6n−6+9]=n[2n2−3n+4]3= \frac{n[2n^2 - 3n + 4]}{3}=3n[2n2−3n+4]=2n3−3n2+4n3= \frac{2n^3 - 3n^2 + 4n}{3}=32n3−3n2+4n3. 最終的な答え2n3−3n2+4n3\frac{2n^3 - 3n^2 + 4n}{3}32n3−3n2+4n