与えられた和 $S_n = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-1) \cdot 2^n$ を求める問題です。代数学級数数列等比数列和2025/6/271. 問題の内容与えられた和 Sn=1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2nS_n = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-1) \cdot 2^nSn=1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2n を求める問題です。2. 解き方の手順まず、SnS_nSn を書き下します。Sn=1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2nS_n = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-1) \cdot 2^nSn=1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2n次に、SnS_nSn に 2 を掛けたものを書き下します。2Sn=1⋅22+3⋅23+5⋅24+⋯+(2n−3)⋅2n+(2n−1)⋅2n+12S_n = 1 \cdot 2^2 + 3 \cdot 2^3 + 5 \cdot 2^4 + \dots + (2n-3) \cdot 2^n + (2n-1) \cdot 2^{n+1}2Sn=1⋅22+3⋅23+5⋅24+⋯+(2n−3)⋅2n+(2n−1)⋅2n+1SnS_nSn から 2Sn2S_n2Sn を引きます。Sn−2Sn=(1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2n)−(1⋅22+3⋅23+5⋅24+⋯+(2n−3)⋅2n+(2n−1)⋅2n+1)S_n - 2S_n = (1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-1) \cdot 2^n) - (1 \cdot 2^2 + 3 \cdot 2^3 + 5 \cdot 2^4 + \dots + (2n-3) \cdot 2^n + (2n-1) \cdot 2^{n+1})Sn−2Sn=(1⋅2+3⋅22+5⋅23+⋯+(2n−1)⋅2n)−(1⋅22+3⋅23+5⋅24+⋯+(2n−3)⋅2n+(2n−1)⋅2n+1)−Sn=1⋅2+(3−1)⋅22+(5−3)⋅23+⋯+((2n−1)−(2n−3))⋅2n−(2n−1)⋅2n+1-S_n = 1 \cdot 2 + (3-1) \cdot 2^2 + (5-3) \cdot 2^3 + \dots + ((2n-1) - (2n-3)) \cdot 2^n - (2n-1) \cdot 2^{n+1}−Sn=1⋅2+(3−1)⋅22+(5−3)⋅23+⋯+((2n−1)−(2n−3))⋅2n−(2n−1)⋅2n+1−Sn=2+2⋅22+2⋅23+⋯+2⋅2n−(2n−1)⋅2n+1-S_n = 2 + 2 \cdot 2^2 + 2 \cdot 2^3 + \dots + 2 \cdot 2^n - (2n-1) \cdot 2^{n+1}−Sn=2+2⋅22+2⋅23+⋯+2⋅2n−(2n−1)⋅2n+1−Sn=2+23+24+⋯+2n+1−(2n−1)⋅2n+1-S_n = 2 + 2^3 + 2^4 + \dots + 2^{n+1} - (2n-1) \cdot 2^{n+1}−Sn=2+23+24+⋯+2n+1−(2n−1)⋅2n+1232^323 から 2n+12^{n+1}2n+1 までの等比数列の和を求めます。初項 a=23=8a = 2^3 = 8a=23=8, 公比 r=2r = 2r=2, 項数 n−1n-1n−1 なので、∑k=3n+12k=23(2n−1−1)2−1=8(2n−1−1)=2n+2−8\sum_{k=3}^{n+1} 2^k = \frac{2^3(2^{n-1}-1)}{2-1} = 8(2^{n-1} - 1) = 2^{n+2} - 8∑k=3n+12k=2−123(2n−1−1)=8(2n−1−1)=2n+2−8したがって、−Sn=2+(2n+2−8)−(2n−1)⋅2n+1-S_n = 2 + (2^{n+2} - 8) - (2n-1) \cdot 2^{n+1}−Sn=2+(2n+2−8)−(2n−1)⋅2n+1−Sn=2n+2−6−(2n−1)⋅2n+1-S_n = 2^{n+2} - 6 - (2n-1) \cdot 2^{n+1}−Sn=2n+2−6−(2n−1)⋅2n+1−Sn=2n+2−6−(2n⋅2n+1−2n+1)-S_n = 2^{n+2} - 6 - (2n \cdot 2^{n+1} - 2^{n+1})−Sn=2n+2−6−(2n⋅2n+1−2n+1)−Sn=2n+2−6−n⋅2n+2+2n+1-S_n = 2^{n+2} - 6 - n \cdot 2^{n+2} + 2^{n+1}−Sn=2n+2−6−n⋅2n+2+2n+1−Sn=2n+2+2n+1−n⋅2n+2−6-S_n = 2^{n+2} + 2^{n+1} - n \cdot 2^{n+2} - 6−Sn=2n+2+2n+1−n⋅2n+2−6−Sn=4⋅2n+2⋅2n−4n⋅2n−6-S_n = 4 \cdot 2^n + 2 \cdot 2^n - 4n \cdot 2^n - 6−Sn=4⋅2n+2⋅2n−4n⋅2n−6−Sn=6⋅2n−n⋅4⋅2n−6-S_n = 6 \cdot 2^n - n \cdot 4 \cdot 2^n - 6−Sn=6⋅2n−n⋅4⋅2n−6Sn=−6⋅2n+n⋅2n+2+6=(n−3/2)2n+2+6=(n−1)2n+1+6S_n = -6 \cdot 2^n + n \cdot 2^{n+2} + 6 = (n-3/2)2^{n+2} + 6 = (n-1) 2^{n+1} + 6Sn=−6⋅2n+n⋅2n+2+6=(n−3/2)2n+2+6=(n−1)2n+1+6Sn=(2n−2)2n+6S_n = (2n-2)2^n + 6Sn=(2n−2)2n+6−Sn=2+23+⋯+2n+1−(2n−1)2n+1-S_n = 2 + 2^3 + \dots + 2^{n+1} - (2n-1)2^{n+1}−Sn=2+23+⋯+2n+1−(2n−1)2n+1−Sn=2+23(2n−1−1)2−1−(2n−1)2n+1-S_n = 2 + \frac{2^3(2^{n-1}-1)}{2-1} - (2n-1)2^{n+1}−Sn=2+2−123(2n−1−1)−(2n−1)2n+1−Sn=2+8(2n−1−1)−(2n−1)2n+1-S_n = 2 + 8(2^{n-1}-1) - (2n-1)2^{n+1}−Sn=2+8(2n−1−1)−(2n−1)2n+1−Sn=2+2n+2−8−(2n−1)2n+1-S_n = 2 + 2^{n+2} - 8 - (2n-1)2^{n+1}−Sn=2+2n+2−8−(2n−1)2n+1−Sn=2n+2−6−(2n−1)2n+1-S_n = 2^{n+2} - 6 - (2n-1)2^{n+1}−Sn=2n+2−6−(2n−1)2n+1−Sn=2n+2−6−2n2n+1+2n+1-S_n = 2^{n+2} - 6 - 2n2^{n+1} + 2^{n+1}−Sn=2n+2−6−2n2n+1+2n+1−Sn=4(2n)−6−4n(2n)+2(2n)-S_n = 4(2^n) - 6 - 4n(2^n) + 2(2^n)−Sn=4(2n)−6−4n(2n)+2(2n)−Sn=6(2n)−4n(2n)−6-S_n = 6(2^n) - 4n(2^n) - 6−Sn=6(2n)−4n(2n)−6Sn=(4n−6)2n+6=(2n−3)2n+1+6=2(2n−3)2n+6S_n = (4n-6)2^n + 6 = (2n-3)2^{n+1} + 6 = 2(2n-3)2^n + 6Sn=(4n−6)2n+6=(2n−3)2n+1+6=2(2n−3)2n+63. 最終的な答えSn=(2n−3)2n+1+6S_n = (2n-3)2^{n+1} + 6Sn=(2n−3)2n+1+6