$32^{0.4}$ を計算してください。

代数学指数指数法則累乗根計算
2025/3/30

1. 問題の内容

320.432^{0.4} を計算してください。

2. 解き方の手順

まず、指数を分数に変換します。0.4=410=250.4 = \frac{4}{10} = \frac{2}{5} です。
したがって、問題は 322532^{\frac{2}{5}} となります。
次に、32を素因数分解します。32=2532 = 2^5 です。
したがって、3225=(25)2532^{\frac{2}{5}} = (2^5)^{\frac{2}{5}} となります。
指数法則 (am)n=amn(a^m)^n = a^{mn} を適用すると、(25)25=2525=22(2^5)^{\frac{2}{5}} = 2^{5 \cdot \frac{2}{5}} = 2^2 となります。
最後に、222^2 を計算します。22=42^2 = 4 です。

3. 最終的な答え

4

「代数学」の関連問題

1以上10以下の自然数全体の集合を$S$とし、$S$を普遍集合とする。集合$A, B, C, D$が以下のように定義されている。 $A = \{x | x \le 5\}$ $B = \{x | x ...

集合部分集合集合演算
2025/4/11

与えられたベクトルの演算、ベクトルの長さの計算、ベクトルを用いた点の移動、ベクトルによる表現に関する問題です。具体的には、以下の問いに答えます。 (3) ベクトル $\begin{pmatrix} 3...

ベクトルベクトルの演算ベクトルの長さ点の移動線形代数
2025/4/11

以下の連立方程式を解く問題です。 $x + y = 9$ $\frac{x}{4} + \frac{y}{5} = 1$

連立方程式代入法一次方程式
2025/4/11

与えられた連立一次方程式を解き、$x, y, z$の値を求める問題です。 $x + y = -1$ $y + z = 6$ $z + x = 3$

連立一次方程式線形代数方程式の解法
2025/4/11

画像には複数の問題がありますが、ここでは3番目の連立方程式 $\begin{cases} 7x - 2y = 16 \\ 3(12 - y) = 3x + y \end{cases}$ を解きます。

連立方程式方程式代数
2025/4/11

ベクトル $\begin{pmatrix} a \\ 1 \end{pmatrix}$ と $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$ の和が $\begin{pm...

ベクトルベクトルの加算連立方程式
2025/4/11

与えられた不等式 $2x - \frac{\pi}{2} \geq \frac{\pi}{3}$ を解き、$x$の範囲を求めます。

不等式数式処理π
2025/4/10

与えられた不等式 $3x - \pi(x-1) > 3$ を解き、$x$の範囲を求める問題です。

不等式一次不等式数式処理不等式の解法
2025/4/10

与えられた不等式 $2x - 4x > -9 + 3$ を解き、$x$ の範囲を求めます。

不等式一次不等式解の範囲
2025/4/10

与えられた連立不等式 $\begin{cases} 1 - 2x > 4 \\ 2x + 7 \le 3 \end{cases}$ を満たす $x$ の範囲を求めます。

不等式連立不等式一次不等式解の範囲
2025/4/10