次の和を求めよ。 $3^2 + 5^2 + 7^2 + \dots + (2n+1)^2$代数学数列級数シグマ和の公式代数計算2025/7/11. 問題の内容次の和を求めよ。32+52+72+⋯+(2n+1)23^2 + 5^2 + 7^2 + \dots + (2n+1)^232+52+72+⋯+(2n+1)22. 解き方の手順この数列は、初項が 32=93^2 = 932=9、末項が (2n+1)2(2n+1)^2(2n+1)2 の奇数の二乗の和です。一般に、奇数の数列は 2k−12k-12k−1 と表すことができます。この問題では、初項が3であるため、 k=2k=2k=2 から始まる数列と考えることができます。3=2(2)−13 = 2(2) - 13=2(2)−15=2(3)−15 = 2(3) - 15=2(3)−17=2(4)−17 = 2(4) - 17=2(4)−1…\dots…2n+1=2(n+1)−12n+1 = 2(n+1) - 12n+1=2(n+1)−1したがって、与えられた和は、∑k=2n+1(2k−1)2=∑k=2n+1(4k2−4k+1)=4∑k=2n+1k2−4∑k=2n+1k+∑k=2n+11\sum_{k=2}^{n+1} (2k-1)^2 = \sum_{k=2}^{n+1} (4k^2 - 4k + 1) = 4\sum_{k=2}^{n+1} k^2 - 4\sum_{k=2}^{n+1} k + \sum_{k=2}^{n+1} 1∑k=2n+1(2k−1)2=∑k=2n+1(4k2−4k+1)=4∑k=2n+1k2−4∑k=2n+1k+∑k=2n+11∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^n 1 = n∑k=1n1=n∑k=2n+1k2=∑k=1n+1k2−12=(n+1)(n+2)(2n+3)6−1=(n+1)(n+2)(2n+3)−66\sum_{k=2}^{n+1} k^2 = \sum_{k=1}^{n+1} k^2 - 1^2 = \frac{(n+1)(n+2)(2n+3)}{6} - 1 = \frac{(n+1)(n+2)(2n+3) - 6}{6}∑k=2n+1k2=∑k=1n+1k2−12=6(n+1)(n+2)(2n+3)−1=6(n+1)(n+2)(2n+3)−6∑k=2n+1k=∑k=1n+1k−1=(n+1)(n+2)2−1=(n+1)(n+2)−22\sum_{k=2}^{n+1} k = \sum_{k=1}^{n+1} k - 1 = \frac{(n+1)(n+2)}{2} - 1 = \frac{(n+1)(n+2) - 2}{2}∑k=2n+1k=∑k=1n+1k−1=2(n+1)(n+2)−1=2(n+1)(n+2)−2∑k=2n+11=(n+1)−1=n\sum_{k=2}^{n+1} 1 = (n+1) - 1 = n∑k=2n+11=(n+1)−1=n求める和は、4∑k=2n+1k2−4∑k=2n+1k+∑k=2n+11=4((n+1)(n+2)(2n+3)−66)−4((n+1)(n+2)−22)+n4\sum_{k=2}^{n+1} k^2 - 4\sum_{k=2}^{n+1} k + \sum_{k=2}^{n+1} 1 = 4 \left(\frac{(n+1)(n+2)(2n+3) - 6}{6}\right) - 4 \left(\frac{(n+1)(n+2) - 2}{2}\right) + n4∑k=2n+1k2−4∑k=2n+1k+∑k=2n+11=4(6(n+1)(n+2)(2n+3)−6)−4(2(n+1)(n+2)−2)+n=23((n+1)(n+2)(2n+3)−6)−2((n+1)(n+2)−2)+n= \frac{2}{3} ((n+1)(n+2)(2n+3) - 6) - 2 ((n+1)(n+2) - 2) + n=32((n+1)(n+2)(2n+3)−6)−2((n+1)(n+2)−2)+n=23(2n3+9n2+13n+6−6)−2(n2+3n+2−2)+n= \frac{2}{3} (2n^3 + 9n^2 + 13n + 6 - 6) - 2 (n^2 + 3n + 2 - 2) + n=32(2n3+9n2+13n+6−6)−2(n2+3n+2−2)+n=23(2n3+9n2+13n)−2(n2+3n)+n= \frac{2}{3} (2n^3 + 9n^2 + 13n) - 2 (n^2 + 3n) + n=32(2n3+9n2+13n)−2(n2+3n)+n=43n3+6n2+263n−2n2−6n+n= \frac{4}{3} n^3 + 6n^2 + \frac{26}{3} n - 2n^2 - 6n + n=34n3+6n2+326n−2n2−6n+n=43n3+4n2+53n= \frac{4}{3} n^3 + 4n^2 + \frac{5}{3} n=34n3+4n2+35n=n(4n2+12n+5)3=n(2n+1)(2n+5)3= \frac{n(4n^2 + 12n + 5)}{3} = \frac{n(2n+1)(2n+5)}{3}=3n(4n2+12n+5)=3n(2n+1)(2n+5)3. 最終的な答えn(2n+1)(2n+5)3\frac{n(2n+1)(2n+5)}{3}3n(2n+1)(2n+5)