$x = \frac{1}{\sqrt{2}+1}$、 $y = \frac{1}{\sqrt{2}-1}$ のとき、以下の式の値を求める問題です。 (1) $x^2+y^2$ (2) $x^3+y^3$ (3) $x^3y-x^2y^2+xy^3$

代数学式の計算有理化展開
2025/7/1

1. 問題の内容

x=12+1x = \frac{1}{\sqrt{2}+1}y=121y = \frac{1}{\sqrt{2}-1} のとき、以下の式の値を求める問題です。
(1) x2+y2x^2+y^2
(2) x3+y3x^3+y^3
(3) x3yx2y2+xy3x^3y-x^2y^2+xy^3

2. 解き方の手順

まず、xxyyをそれぞれ有理化します。
x=12+1=21(2+1)(21)=2121=21x = \frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1
y=121=2+1(21)(2+1)=2+121=2+1y = \frac{1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{\sqrt{2}+1}{2-1} = \sqrt{2}+1
(1) x2+y2x^2+y^2 を求めます。
x2=(21)2=222+1=322x^2 = (\sqrt{2}-1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}
y2=(2+1)2=2+22+1=3+22y^2 = (\sqrt{2}+1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}
したがって、
x2+y2=(322)+(3+22)=6x^2+y^2 = (3 - 2\sqrt{2}) + (3 + 2\sqrt{2}) = 6
(2) x3+y3x^3+y^3 を求めます。
x3=(21)3=(2)33(2)2(1)+3(2)(1)213=226+321=527x^3 = (\sqrt{2}-1)^3 = (\sqrt{2})^3 - 3(\sqrt{2})^2(1) + 3(\sqrt{2})(1)^2 - 1^3 = 2\sqrt{2} - 6 + 3\sqrt{2} - 1 = 5\sqrt{2} - 7
y3=(2+1)3=(2)3+3(2)2(1)+3(2)(1)2+13=22+6+32+1=52+7y^3 = (\sqrt{2}+1)^3 = (\sqrt{2})^3 + 3(\sqrt{2})^2(1) + 3(\sqrt{2})(1)^2 + 1^3 = 2\sqrt{2} + 6 + 3\sqrt{2} + 1 = 5\sqrt{2} + 7
したがって、
x3+y3=(527)+(52+7)=102x^3+y^3 = (5\sqrt{2}-7) + (5\sqrt{2}+7) = 10\sqrt{2}
(3) x3yx2y2+xy3x^3y-x^2y^2+xy^3 を求めます。
x3yx2y2+xy3=xy(x2xy+y2)x^3y-x^2y^2+xy^3 = xy(x^2-xy+y^2)
xy=(21)(2+1)=21=1xy = (\sqrt{2}-1)(\sqrt{2}+1) = 2-1 = 1
x2xy+y2=(x2+y2)xy=61=5x^2-xy+y^2 = (x^2+y^2) - xy = 6 - 1 = 5
したがって、
x3yx2y2+xy3=xy(x2xy+y2)=15=5x^3y-x^2y^2+xy^3 = xy(x^2-xy+y^2) = 1 \cdot 5 = 5

3. 最終的な答え

(1) x2+y2=6x^2+y^2 = 6
(2) x3+y3=102x^3+y^3 = 10\sqrt{2}
(3) x3yx2y2+xy3=5x^3y-x^2y^2+xy^3 = 5