$5.4^n$ の整数部分が3桁であるような整数 $n$ の個数を求める問題です。ただし、$\log_{10}2 = 0.3010$、$\log_{10}3 = 0.4771$ とします。

代数学対数不等式常用対数数値計算
2025/7/3

1. 問題の内容

5.4n5.4^n の整数部分が3桁であるような整数 nn の個数を求める問題です。ただし、log102=0.3010\log_{10}2 = 0.3010log103=0.4771\log_{10}3 = 0.4771 とします。

2. 解き方の手順

5.4n5.4^n の整数部分が3桁であるということは、1005.4n<1000100 \le 5.4^n < 1000 が成り立つということです。
両辺の常用対数をとると、
log10100log105.4n<log101000\log_{10}100 \le \log_{10}5.4^n < \log_{10}1000
2nlog105.4<32 \le n\log_{10}5.4 < 3
2nlog10(5410)<32 \le n\log_{10}(\frac{54}{10}) < 3
2n(log1054log1010)<32 \le n(\log_{10}54 - \log_{10}10) < 3
2n(log10(2×33)1)<32 \le n(\log_{10}(2 \times 3^3) - 1) < 3
2n(log102+3log1031)<32 \le n(\log_{10}2 + 3\log_{10}3 - 1) < 3
ここで、log102=0.3010\log_{10}2 = 0.3010log103=0.4771\log_{10}3 = 0.4771 を代入すると、
2n(0.3010+3×0.47711)<32 \le n(0.3010 + 3 \times 0.4771 - 1) < 3
2n(0.3010+1.43131)<32 \le n(0.3010 + 1.4313 - 1) < 3
2n(0.7323)<32 \le n(0.7323) < 3
各辺を0.7323で割ると、
20.7323n<30.7323\frac{2}{0.7323} \le n < \frac{3}{0.7323}
2.731<n<4.0972.731 < n < 4.097
したがって、nn は整数なので、n=3,4n = 3, 4 となります。
よって、条件を満たす整数 nn の個数は2個です。

3. 最終的な答え

2個

「代数学」の関連問題

数列 $\{a_n\}$ が、$a_1 = 4$ および漸化式 $a_{n+1} = 3a_n + 2$ で定義されているとき、一般項 $a_n$ を求めよ。

数列漸化式等比数列
2025/7/3

$a, b, c$ を実数とする。$a - (b - c)$ の値を求める問題です。選択肢の中から正しいものを選びます。

式の計算分配法則文字式
2025/7/3

与えられた数式の総和を計算します。数式は、$\sum_{k=1}^{2n} (k-1)$ です。

シグマ級数公式計算
2025/7/3

与えられた問題は、次の和を求めることです。 $\sum_{k=1}^{n} \frac{1}{3^k}$

等比数列級数Σ数学的帰納法
2025/7/3

2つの直線 $ax + 2y = 1$ と $x + (a-1)y = 3$ が、(1)平行、(2)垂直になる時の定数 $a$ の値をそれぞれ求める。

直線平行垂直方程式連立方程式傾き
2025/7/3

数列 $\{a_n\}$ が $a_1 = 5$ および漸化式 $a_{n+1} = 8a_n^2$ ($n = 1, 2, 3, \dots$) によって定義されているとき、この数列の一般項 $a_...

数列漸化式対数
2025/7/3

定数 $a$ が与えられたとき、関数 $f(x) = x^2 + 5x$ において、$x$ が $a$ から $a+2$ まで変化するときの平均変化率を求める。

関数平均変化率二次関数
2025/7/3

与えられた行列 $A$ の余因子行列 $\tilde{A}$ を求めよ。 $A = \begin{bmatrix} -2 & 3 & -4 \\ 4 & -3 & 8 \\ -4 & 3 & -4 \...

行列余因子行列線形代数
2025/7/3

$3.75^n$ の整数部分が3桁であるような整数 $n$ の個数を求めます。ただし、$\log_{10} 2 = 0.3010$、$ \log_{10} 3 = 0.4771$ とします。

対数不等式指数
2025/7/3

不等式 $9^n < 100000$ を満たす最大の整数 $n$ を求めよ。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする。

不等式対数指数関数常用対数数値計算
2025/7/3