立方体の6つの面に、青、白、赤、黄、紫、緑の6色をそれぞれ1面ずつ塗る。ただし、立方体を回転させたときに色の配置が同じになるものは同じ塗り方とみなす。異なる塗り方は何通りあるか?

幾何学立方体回転組み合わせ群論対称性
2025/7/3

1. 問題の内容

立方体の6つの面に、青、白、赤、黄、紫、緑の6色をそれぞれ1面ずつ塗る。ただし、立方体を回転させたときに色の配置が同じになるものは同じ塗り方とみなす。異なる塗り方は何通りあるか?

2. 解き方の手順

まず、立方体を固定しない場合、6つの面に6色を塗る塗り方は 6!6! 通りである。しかし、立方体の回転によって同じ塗り方が複数回カウントされているため、回転による重複を考慮する必要がある。
立方体をある面を下にしたとき、上面を固定すると、側面は4通りの回転が可能である。
立方体の回転群の位数は24である。
立方体の回転操作の数を数えることを考える。
- ある1つの面を底面として固定する。このとき、上面は残り5つの色のうちどれかである。
- 上面の色が決まると、側面の4色は円順列となる。
- 円順列の数は (41)!=3!=6(4-1)! = 3! = 6 通りである。
したがって、立方体の塗り方の総数は
5×3!=5×6=30 5 \times 3! = 5 \times 6 = 30 通りとなる。
別の考え方として、群論的な考え方を用いる。6色すべて異なる色なので、回転対称性を考慮すると、
6!24=72024=30 \frac{6!}{24} = \frac{720}{24} = 30 通りとなる。

3. 最終的な答え

30通り

「幾何学」の関連問題

南北7本、東西6本の道がある。C地点は通れない。1区間の距離は南北、東西で等しい。 (1) O地点からA地点を通りP地点へ最短距離で行く道順の数を求める。 (2) O地点からB地点を通りP地点へ最短距...

最短経路組み合わせ道順場合の数
2025/7/3

図において、$x$の値を求める問題です。図には、三角形ABCの外側に点P, Q, Rがあり、それぞれ点C, A, Bから接線が引かれています。AR = $x$, AQ = 4, BR = 4, BP ...

接線三角形外接長さ
2025/7/3

図において、AR:RB = 1:2, BQ:QA = 3:3 = 1:1, CP:PB = 2:3であるとき、CQ:QA = xを求める問題です。

チェバの定理三角形
2025/7/3

(1) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェバの定理を用いてx (線分BPの長さ) を求める。 (2) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェ...

チェバの定理三角形線分比
2025/7/3

三角形ABCにおいて、点P, Q, Rがそれぞれ辺BC, CA, AB上にあり、線分AP, BQ, CRが一点で交わっているとき、チェバの定理を用いて $x$ を求めます。チェバの定理は、 $...

チェバの定理メネラウスの定理三角形
2025/7/3

平行四辺形ABCDにおいて、辺BCの中点をE、辺CDの中点をFとする。対角線BDとAEの交点をP、対角線BDとAFの交点をQとする。このとき、線分PQとBDの長さの比 $PQ:BD$ を求めよ。

ベクトル平行四辺形線分の比
2025/7/3

$\angle A = 90^\circ$, $AB = 4$, $AC = 3$ である直角三角形 $ABC$ について、その重心を $G$ とするとき、$\triangle GBC$ の面積を求め...

三角形重心面積直角三角形
2025/7/3

三角形ABCにおいて、$AB=6$, $BC=5$, $CA=3$であり、内心をIとする。直線AIと辺BCの交点をDとする。以下の問いに答える。 (1) 線分BDの長さを求めよ。 (2) AI:IDを...

三角形内心角の二等分線
2025/7/3

三角形ABCにおいて、角BACは$20^\circ + \beta$、角ACBは$30^\circ$、角ABCは$\alpha$です。また、点Oは三角形ABCの内部にあり、角OACは$\beta$、角...

三角形角度内角の和角の計算
2025/7/3

問題は、点Oが三角形ABCの外心であるとき、与えられた図に基づいて角 $\alpha$ と $\beta$ の値を求める問題です。3つの図それぞれについて、$\alpha$ と $\beta$ を求め...

外心三角形角度二等辺三角形角の計算
2025/7/3