与えられた積分 $\int e^{-x}\sin(x+\frac{\pi}{4})dx$ を計算します。解析学積分部分積分三角関数2025/7/91. 問題の内容与えられた積分 ∫e−xsin(x+π4)dx\int e^{-x}\sin(x+\frac{\pi}{4})dx∫e−xsin(x+4π)dx を計算します。2. 解き方の手順部分積分を2回繰り返して計算します。まず、三角関数の加法定理を用いて sin(x+π4)\sin(x+\frac{\pi}{4})sin(x+4π) を展開します。sin(x+π4)=sin(x)cos(π4)+cos(x)sin(π4)=22(sin(x)+cos(x))\sin(x+\frac{\pi}{4}) = \sin(x)\cos(\frac{\pi}{4}) + \cos(x)\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\sin(x) + \cos(x))sin(x+4π)=sin(x)cos(4π)+cos(x)sin(4π)=22(sin(x)+cos(x))したがって、積分は次のようになります。∫e−xsin(x+π4)dx=22∫e−x(sin(x)+cos(x))dx\int e^{-x}\sin(x+\frac{\pi}{4})dx = \frac{\sqrt{2}}{2} \int e^{-x}(\sin(x) + \cos(x))dx∫e−xsin(x+4π)dx=22∫e−x(sin(x)+cos(x))dx次に、∫e−xsin(x)dx\int e^{-x}\sin(x)dx∫e−xsin(x)dx と ∫e−xcos(x)dx\int e^{-x}\cos(x)dx∫e−xcos(x)dx を別々に計算します。I=∫e−xsin(x)dxI = \int e^{-x}\sin(x)dxI=∫e−xsin(x)dx に対して部分積分を行うと、u=sin(x),dv=e−xdxu = \sin(x), dv = e^{-x}dxu=sin(x),dv=e−xdx とすると、du=cos(x)dx,v=−e−xdu = \cos(x)dx, v = -e^{-x}du=cos(x)dx,v=−e−x なので、I=−e−xsin(x)+∫e−xcos(x)dxI = -e^{-x}\sin(x) + \int e^{-x}\cos(x)dxI=−e−xsin(x)+∫e−xcos(x)dxここで J=∫e−xcos(x)dxJ = \int e^{-x}\cos(x)dxJ=∫e−xcos(x)dx とすると、u=cos(x),dv=e−xdxu = \cos(x), dv = e^{-x}dxu=cos(x),dv=e−xdx とすると、du=−sin(x)dx,v=−e−xdu = -\sin(x)dx, v = -e^{-x}du=−sin(x)dx,v=−e−x なので、J=−e−xcos(x)−∫e−xsin(x)dx=−e−xcos(x)−IJ = -e^{-x}\cos(x) - \int e^{-x}\sin(x)dx = -e^{-x}\cos(x) - IJ=−e−xcos(x)−∫e−xsin(x)dx=−e−xcos(x)−Iしたがって、I=−e−xsin(x)+J=−e−xsin(x)−e−xcos(x)−II = -e^{-x}\sin(x) + J = -e^{-x}\sin(x) - e^{-x}\cos(x) - II=−e−xsin(x)+J=−e−xsin(x)−e−xcos(x)−I2I=−e−x(sin(x)+cos(x))2I = -e^{-x}(\sin(x) + \cos(x))2I=−e−x(sin(x)+cos(x))I=−12e−x(sin(x)+cos(x))I = -\frac{1}{2}e^{-x}(\sin(x) + \cos(x))I=−21e−x(sin(x)+cos(x))J=−e−xcos(x)−I=−e−xcos(x)+12e−x(sin(x)+cos(x))=12e−x(sin(x)−cos(x))J = -e^{-x}\cos(x) - I = -e^{-x}\cos(x) + \frac{1}{2}e^{-x}(\sin(x) + \cos(x)) = \frac{1}{2}e^{-x}(\sin(x) - \cos(x))J=−e−xcos(x)−I=−e−xcos(x)+21e−x(sin(x)+cos(x))=21e−x(sin(x)−cos(x))∫e−x(sin(x)+cos(x))dx=I+J=−12e−x(sin(x)+cos(x))+12e−x(sin(x)−cos(x))=−e−xcos(x)\int e^{-x}(\sin(x) + \cos(x))dx = I + J = -\frac{1}{2}e^{-x}(\sin(x) + \cos(x)) + \frac{1}{2}e^{-x}(\sin(x) - \cos(x)) = -e^{-x}\cos(x)∫e−x(sin(x)+cos(x))dx=I+J=−21e−x(sin(x)+cos(x))+21e−x(sin(x)−cos(x))=−e−xcos(x)よって、∫e−xsin(x+π4)dx=22∫e−x(sin(x)+cos(x))dx=22(−e−xcos(x))+C=−22e−xcos(x)+C\int e^{-x}\sin(x+\frac{\pi}{4})dx = \frac{\sqrt{2}}{2} \int e^{-x}(\sin(x) + \cos(x))dx = \frac{\sqrt{2}}{2} (-e^{-x}\cos(x)) + C = -\frac{\sqrt{2}}{2}e^{-x}\cos(x) + C∫e−xsin(x+4π)dx=22∫e−x(sin(x)+cos(x))dx=22(−e−xcos(x))+C=−22e−xcos(x)+C3. 最終的な答え−22e−xcos(x)+C-\frac{\sqrt{2}}{2}e^{-x}\cos(x) + C−22e−xcos(x)+C