数列 $\{a_n\}$ が与えられており、$a_1 = 1$ かつ $a_{n+1} = 2a_n + 3^n$ であるとき、$a_n$ を求めよ。代数学数列漸化式等比数列等差数列2025/7/151. 問題の内容数列 {an}\{a_n\}{an} が与えられており、a1=1a_1 = 1a1=1 かつ an+1=2an+3na_{n+1} = 2a_n + 3^nan+1=2an+3n であるとき、ana_nan を求めよ。2. 解き方の手順まず、an+1=2an+3na_{n+1} = 2a_n + 3^nan+1=2an+3n の両辺を 3n+13^{n+1}3n+1 で割ると、an+13n+1=2an3n+1+3n3n+1\frac{a_{n+1}}{3^{n+1}} = \frac{2a_n}{3^{n+1}} + \frac{3^n}{3^{n+1}}3n+1an+1=3n+12an+3n+13nan+13n+1=23an3n+13\frac{a_{n+1}}{3^{n+1}} = \frac{2}{3} \frac{a_n}{3^n} + \frac{1}{3}3n+1an+1=323nan+31bn=an3nb_n = \frac{a_n}{3^n}bn=3nan とおくと、bn+1=23bn+13b_{n+1} = \frac{2}{3} b_n + \frac{1}{3}bn+1=32bn+31これは等差数列に帰着できる。bn+1−1=23(bn−1)b_{n+1} - 1 = \frac{2}{3} (b_n - 1)bn+1−1=32(bn−1)数列 {bn−1}\{b_n - 1\}{bn−1} は、初項 b1−1=a131−1=13−1=−23b_1 - 1 = \frac{a_1}{3^1} - 1 = \frac{1}{3} - 1 = -\frac{2}{3}b1−1=31a1−1=31−1=−32、公比 23\frac{2}{3}32 の等比数列である。したがって、bn−1=(−23)(23)n−1=−23(23)n−1=−2(23)n−113=−2(23)n−1(13)1=−2⋅2n−13nb_n - 1 = \left(-\frac{2}{3}\right) \left(\frac{2}{3}\right)^{n-1} = -\frac{2}{3} \left(\frac{2}{3}\right)^{n-1} = -2 \left(\frac{2}{3}\right)^{n-1} \frac{1}{3} = -2 \left(\frac{2}{3}\right)^{n-1} \left(\frac{1}{3}\right)^1 = -2\cdot\frac{2^{n-1}}{3^n}bn−1=(−32)(32)n−1=−32(32)n−1=−2(32)n−131=−2(32)n−1(31)1=−2⋅3n2n−1bn=1−2(23)n−113=1−2n3nb_n = 1 - 2 \left(\frac{2}{3}\right)^{n-1} \frac{1}{3} = 1 - \frac{2^n}{3^n} bn=1−2(32)n−131=1−3n2nよって、bn=1−2n3n=3n−2n3nb_n = 1 - \frac{2^n}{3^n} = \frac{3^n - 2^n}{3^n}bn=1−3n2n=3n3n−2nan=3nbn=3n(1−2n3n)=3n−2na_n = 3^n b_n = 3^n \left( 1 - \frac{2^n}{3^n}\right) = 3^n - 2^nan=3nbn=3n(1−3n2n)=3n−2n3. 最終的な答えan=3n−2na_n = 3^n - 2^nan=3n−2n