与えられた不定積分 $\int \frac{dx}{(x^2+1)^2}$ を、漸化式を利用して求めます。解析学積分不定積分漸化式部分積分2025/7/181. 問題の内容与えられた不定積分 ∫dx(x2+1)2\int \frac{dx}{(x^2+1)^2}∫(x2+1)2dx を、漸化式を利用して求めます。2. 解き方の手順まず、一般形として、In=∫dx(x2+1)nI_n = \int \frac{dx}{(x^2+1)^n}In=∫(x2+1)ndx を考えます。部分積分を利用して、InI_nIn の漸化式を求めます。In=∫dx(x2+1)n=∫1(x2+1)ndxI_n = \int \frac{dx}{(x^2+1)^n} = \int \frac{1}{(x^2+1)^n} dxIn=∫(x2+1)ndx=∫(x2+1)n1dxx=x,dv=dx(x2+1)nx = x, dv = \frac{dx}{(x^2+1)^n}x=x,dv=(x2+1)ndx とすると、du=dx,v=∫dx(x2+1)ndu = dx, v = \int \frac{dx}{(x^2+1)^n}du=dx,v=∫(x2+1)ndx となりますが、これは役に立ちません。代わりに、In=∫1(x2+1)ndx=∫x2+1(x2+1)ndx−∫x2(x2+1)ndx=∫dx(x2+1)n−1−∫x2(x2+1)ndx=In−1−∫x2(x2+1)ndxI_n = \int \frac{1}{(x^2+1)^n} dx = \int \frac{x^2+1}{(x^2+1)^n} dx - \int \frac{x^2}{(x^2+1)^n} dx = \int \frac{dx}{(x^2+1)^{n-1}} - \int \frac{x^2}{(x^2+1)^n} dx = I_{n-1} - \int \frac{x^2}{(x^2+1)^n} dxIn=∫(x2+1)n1dx=∫(x2+1)nx2+1dx−∫(x2+1)nx2dx=∫(x2+1)n−1dx−∫(x2+1)nx2dx=In−1−∫(x2+1)nx2dxここで、J=∫x2(x2+1)ndxJ = \int \frac{x^2}{(x^2+1)^n} dxJ=∫(x2+1)nx2dx を部分積分で計算します。u=x,dv=x(x2+1)ndxu = x, dv = \frac{x}{(x^2+1)^n} dxu=x,dv=(x2+1)nxdx とすると、du=dx,v=∫x(x2+1)ndx=12∫(x2+1)−nd(x2+1)=12(x2+1)−n+1−n+1=12(1−n)(x2+1)n−1du = dx, v = \int \frac{x}{(x^2+1)^n} dx = \frac{1}{2} \int (x^2+1)^{-n} d(x^2+1) = \frac{1}{2} \frac{(x^2+1)^{-n+1}}{-n+1} = \frac{1}{2(1-n)(x^2+1)^{n-1}}du=dx,v=∫(x2+1)nxdx=21∫(x2+1)−nd(x2+1)=21−n+1(x2+1)−n+1=2(1−n)(x2+1)n−11よって、J=x2(1−n)(x2+1)n−1−∫12(1−n)(x2+1)n−1dx=x2(1−n)(x2+1)n−1−12(1−n)In−1J = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \int \frac{1}{2(1-n)(x^2+1)^{n-1}} dx = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)} I_{n-1}J=2(1−n)(x2+1)n−1x−∫2(1−n)(x2+1)n−11dx=2(1−n)(x2+1)n−1x−2(1−n)1In−1したがって、In=In−1−(x2(1−n)(x2+1)n−1−12(1−n)In−1)=In−1−x2(1−n)(x2+1)n−1+12(1−n)In−1I_n = I_{n-1} - \left(\frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)} I_{n-1}\right) = I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} + \frac{1}{2(1-n)} I_{n-1}In=In−1−(2(1−n)(x2+1)n−1x−2(1−n)1In−1)=In−1−2(1−n)(x2+1)n−1x+2(1−n)1In−1In=(1+12(1−n))In−1−x2(1−n)(x2+1)n−1=2(1−n)+12(1−n)In−1−x2(1−n)(x2+1)n−1=3−2n2(1−n)In−1+x2(n−1)(x2+1)n−1I_n = \left(1 + \frac{1}{2(1-n)}\right) I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} = \frac{2(1-n)+1}{2(1-n)} I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} = \frac{3-2n}{2(1-n)} I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=(1+2(1−n)1)In−1−2(1−n)(x2+1)n−1x=2(1−n)2(1−n)+1In−1−2(1−n)(x2+1)n−1x=2(1−n)3−2nIn−1+2(n−1)(x2+1)n−1xIn=2n−32(n−1)In−1+x2(n−1)(x2+1)n−1I_n = \frac{2n-3}{2(n-1)} I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=2(n−1)2n−3In−1+2(n−1)(x2+1)n−1x与えられた問題は、I2=∫dx(x2+1)2I_2 = \int \frac{dx}{(x^2+1)^2}I2=∫(x2+1)2dx です。I1=∫dxx2+1=arctan(x)+CI_1 = \int \frac{dx}{x^2+1} = \arctan(x) + CI1=∫x2+1dx=arctan(x)+CI2=2(2)−32(2−1)I1+x2(2−1)(x2+1)2−1=12I1+x2(x2+1)=12arctan(x)+x2(x2+1)+CI_2 = \frac{2(2)-3}{2(2-1)} I_1 + \frac{x}{2(2-1)(x^2+1)^{2-1}} = \frac{1}{2} I_1 + \frac{x}{2(x^2+1)} = \frac{1}{2} \arctan(x) + \frac{x}{2(x^2+1)} + CI2=2(2−1)2(2)−3I1+2(2−1)(x2+1)2−1x=21I1+2(x2+1)x=21arctan(x)+2(x2+1)x+C3. 最終的な答え∫dx(x2+1)2=12arctan(x)+x2(x2+1)+C\int \frac{dx}{(x^2+1)^2} = \frac{1}{2} \arctan(x) + \frac{x}{2(x^2+1)} + C∫(x2+1)2dx=21arctan(x)+2(x2+1)x+C