次の定積分を計算します。 $\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{1}^{1} (6x^2 - 2x + 3) dx$解析学定積分積分計算2025/4/41. 問題の内容次の定積分を計算します。∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫11(6x2−2x+3)dx\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{1}^{1} (6x^2 - 2x + 3) dx∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫11(6x2−2x+3)dx2. 解き方の手順まず、各積分を個別に計算します。∫(6x2−2x+3)dx=6⋅x33−2⋅x22+3x+C=2x3−x2+3x+C\int (6x^2 - 2x + 3) dx = 6 \cdot \frac{x^3}{3} - 2 \cdot \frac{x^2}{2} + 3x + C = 2x^3 - x^2 + 3x + C∫(6x2−2x+3)dx=6⋅3x3−2⋅2x2+3x+C=2x3−x2+3x+C次に、各定積分を計算します。∫−2−1(6x2−2x+3)dx=[2x3−x2+3x]−2−1=(2(−1)3−(−1)2+3(−1))−(2(−2)3−(−2)2+3(−2))=(−2−1−3)−(−16−4−6)=−6−(−26)=20\int_{-2}^{-1} (6x^2 - 2x + 3) dx = [2x^3 - x^2 + 3x]_{-2}^{-1} = (2(-1)^3 - (-1)^2 + 3(-1)) - (2(-2)^3 - (-2)^2 + 3(-2)) = (-2 - 1 - 3) - (-16 - 4 - 6) = -6 - (-26) = 20∫−2−1(6x2−2x+3)dx=[2x3−x2+3x]−2−1=(2(−1)3−(−1)2+3(−1))−(2(−2)3−(−2)2+3(−2))=(−2−1−3)−(−16−4−6)=−6−(−26)=20∫−11(6x2−2x+3)dx=[2x3−x2+3x]−11=(2(1)3−(1)2+3(1))−(2(−1)3−(−1)2+3(−1))=(2−1+3)−(−2−1−3)=4−(−6)=10\int_{-1}^{1} (6x^2 - 2x + 3) dx = [2x^3 - x^2 + 3x]_{-1}^{1} = (2(1)^3 - (1)^2 + 3(1)) - (2(-1)^3 - (-1)^2 + 3(-1)) = (2 - 1 + 3) - (-2 - 1 - 3) = 4 - (-6) = 10∫−11(6x2−2x+3)dx=[2x3−x2+3x]−11=(2(1)3−(1)2+3(1))−(2(−1)3−(−1)2+3(−1))=(2−1+3)−(−2−1−3)=4−(−6)=10∫11(6x2−2x+3)dx=0\int_{1}^{1} (6x^2 - 2x + 3) dx = 0∫11(6x2−2x+3)dx=0 (定積分区間の上が下と同じなので)最後に、これらの値を足し合わせます。20+10+0=3020 + 10 + 0 = 3020+10+0=303. 最終的な答え30