次の定積分を計算します。 $\int_{-2}^{0} (15x^2 - 8x + 5) \, dx - \int_{3}^{0} (15x^2 - 8x + 5) \, dx$解析学定積分積分計算多項式2025/4/41. 問題の内容次の定積分を計算します。∫−20(15x2−8x+5) dx−∫30(15x2−8x+5) dx\int_{-2}^{0} (15x^2 - 8x + 5) \, dx - \int_{3}^{0} (15x^2 - 8x + 5) \, dx∫−20(15x2−8x+5)dx−∫30(15x2−8x+5)dx2. 解き方の手順まず、各積分を計算します。∫(15x2−8x+5) dx=15⋅x33−8⋅x22+5x+C=5x3−4x2+5x+C\int (15x^2 - 8x + 5) \, dx = 15 \cdot \frac{x^3}{3} - 8 \cdot \frac{x^2}{2} + 5x + C = 5x^3 - 4x^2 + 5x + C∫(15x2−8x+5)dx=15⋅3x3−8⋅2x2+5x+C=5x3−4x2+5x+C次に、積分区間を適用して計算します。∫−20(15x2−8x+5) dx=[5x3−4x2+5x]−20=(5(0)3−4(0)2+5(0))−(5(−2)3−4(−2)2+5(−2))=0−(5(−8)−4(4)−10)=0−(−40−16−10)=0−(−66)=66\int_{-2}^{0} (15x^2 - 8x + 5) \, dx = [5x^3 - 4x^2 + 5x]_{-2}^{0} = (5(0)^3 - 4(0)^2 + 5(0)) - (5(-2)^3 - 4(-2)^2 + 5(-2)) = 0 - (5(-8) - 4(4) - 10) = 0 - (-40 - 16 - 10) = 0 - (-66) = 66∫−20(15x2−8x+5)dx=[5x3−4x2+5x]−20=(5(0)3−4(0)2+5(0))−(5(−2)3−4(−2)2+5(−2))=0−(5(−8)−4(4)−10)=0−(−40−16−10)=0−(−66)=66∫30(15x2−8x+5) dx=[5x3−4x2+5x]30=(5(0)3−4(0)2+5(0))−(5(3)3−4(3)2+5(3))=0−(5(27)−4(9)+15)=0−(135−36+15)=0−(114)=−114\int_{3}^{0} (15x^2 - 8x + 5) \, dx = [5x^3 - 4x^2 + 5x]_{3}^{0} = (5(0)^3 - 4(0)^2 + 5(0)) - (5(3)^3 - 4(3)^2 + 5(3)) = 0 - (5(27) - 4(9) + 15) = 0 - (135 - 36 + 15) = 0 - (114) = -114∫30(15x2−8x+5)dx=[5x3−4x2+5x]30=(5(0)3−4(0)2+5(0))−(5(3)3−4(3)2+5(3))=0−(5(27)−4(9)+15)=0−(135−36+15)=0−(114)=−114最後に、元の式に代入して計算します。∫−20(15x2−8x+5) dx−∫30(15x2−8x+5) dx=66−(−114)=66+114=180\int_{-2}^{0} (15x^2 - 8x + 5) \, dx - \int_{3}^{0} (15x^2 - 8x + 5) \, dx = 66 - (-114) = 66 + 114 = 180∫−20(15x2−8x+5)dx−∫30(15x2−8x+5)dx=66−(−114)=66+114=1803. 最終的な答え180