与えられた式 $ab(a-b) + bc(b-c) + ca(c-a)$ を因数分解せよ。

代数学因数分解多項式式の展開
2025/4/4

1. 問題の内容

与えられた式 ab(ab)+bc(bc)+ca(ca)ab(a-b) + bc(b-c) + ca(c-a) を因数分解せよ。

2. 解き方の手順

まず、式を展開します。
ab(ab)+bc(bc)+ca(ca)=a2bab2+b2cbc2+c2aca2ab(a-b) + bc(b-c) + ca(c-a) = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2
次に、この式を aa について整理します。
a2bab2+b2cbc2+c2aca2=(bc)a2(b2c2)a+(b2cbc2)a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2 = (b-c)a^2 - (b^2-c^2)a + (b^2c - bc^2)
ここで、b2c2=(bc)(b+c)b^2 - c^2 = (b-c)(b+c) および b2cbc2=bc(bc)b^2c - bc^2 = bc(b-c) を用いて式を書き換えます。
(bc)a2(bc)(b+c)a+bc(bc)=(bc)[a2(b+c)a+bc](b-c)a^2 - (b-c)(b+c)a + bc(b-c) = (b-c)[a^2 - (b+c)a + bc]
さらに、括弧の中を因数分解します。
a2(b+c)a+bc=(ab)(ac)a^2 - (b+c)a + bc = (a-b)(a-c)
したがって、元の式は次のように因数分解されます。
(bc)(ab)(ac)=(ab)(bc)(ca)(b-c)(a-b)(a-c) = -(a-b)(b-c)(c-a)

3. 最終的な答え

(ab)(bc)(ca)-(a-b)(b-c)(c-a)

「代数学」の関連問題

与えられた式 $\sqrt{14 + \sqrt{96}} + \sqrt{5 - 2\sqrt{6}}$ を簡略化して値を求めます。

根号式の簡略化二重根号
2025/4/11

与えられた式 $\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ を計算して簡単にします。

式の計算分母の有理化平方根
2025/4/11

はい、承知いたしました。画像に写っている3つの問題のうち、どの問題を解きますか?

因数分解多項式
2025/4/11

2次方程式 $x^2 - 2x + 3 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha + \beta$、$\alpha\beta$ の値を求めよ。また、$\al...

二次方程式解と係数の関係解の和解の積
2025/4/11

$(2x + 5y - z)^2$ を展開しなさい。

展開多項式因数分解代数
2025/4/11

$(2x + 5y - z)^2$ を展開しなさい。

展開多項式因数分解
2025/4/11

与えられた式 $(x^2+6x+1)(x^2-6x-1)$ を展開する。

式の展開多項式因数分解
2025/4/11

太郎さんと花子さんが全校生徒600人を対象にアンケートを実施した。アンケートの回答数について、一部データが破損したため、メモに残った情報からアンケートの回答数を考える。設問は、アンケートの選択肢A, ...

連立方程式文章問題割合方程式
2025/4/11

与えられた実数 $a$ に対して、方程式 $2\cos^2\theta - \sin\theta = a$ (1) が $0 \le \theta < 2\pi$ の範囲で異なる4つの解を持つような ...

三角関数方程式解の個数二次方程式
2025/4/11

$a = \frac{1}{\sqrt{3} - \sqrt{2}}$ とし、$a$ の小数部分を $t$ とするとき、$\frac{10}{t^2 + 6t + 2}$ の値を求める問題です。

無理数の計算有理化平方根式の計算
2025/4/11