与えられた6つの二次関数について、グラフを描き、軸と頂点を求める問題です。

代数学二次関数グラフ平方完成頂点
2025/7/29

1. 問題の内容

与えられた6つの二次関数について、グラフを描き、軸と頂点を求める問題です。

2. 解き方の手順

各二次関数について、平方完成を行い、頂点の座標を求めます。平方完成した式から軸の方程式もわかります。
(1) y=13x243x+103y = \frac{1}{3}x^2 - \frac{4}{3}x + \frac{10}{3}
y=13(x24x)+103y = \frac{1}{3}(x^2 - 4x) + \frac{10}{3}
y=13(x24x+44)+103y = \frac{1}{3}(x^2 - 4x + 4 - 4) + \frac{10}{3}
y=13(x2)243+103y = \frac{1}{3}(x - 2)^2 - \frac{4}{3} + \frac{10}{3}
y=13(x2)2+63y = \frac{1}{3}(x - 2)^2 + \frac{6}{3}
y=13(x2)2+2y = \frac{1}{3}(x - 2)^2 + 2
頂点: (2, 2), 軸: x=2x = 2
(2) y=2x23x2y = 2x^2 - 3x - 2
y=2(x232x)2y = 2(x^2 - \frac{3}{2}x) - 2
y=2(x232x+916916)2y = 2(x^2 - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) - 2
y=2(x34)2982y = 2(x - \frac{3}{4})^2 - \frac{9}{8} - 2
y=2(x34)298168y = 2(x - \frac{3}{4})^2 - \frac{9}{8} - \frac{16}{8}
y=2(x34)2258y = 2(x - \frac{3}{4})^2 - \frac{25}{8}
頂点: (34\frac{3}{4}, 258-\frac{25}{8}), 軸: x=34x = \frac{3}{4}
(3) y=12x2+2xy = \frac{1}{2}x^2 + 2x
y=12(x2+4x)y = \frac{1}{2}(x^2 + 4x)
y=12(x2+4x+44)y = \frac{1}{2}(x^2 + 4x + 4 - 4)
y=12(x+2)22y = \frac{1}{2}(x + 2)^2 - 2
頂点: (-2, -2), 軸: x=2x = -2
(4) y=(x1)(x2)y = (x - 1)(x - 2)
y=x23x+2y = x^2 - 3x + 2
y=(x23x+94)94+2y = (x^2 - 3x + \frac{9}{4}) - \frac{9}{4} + 2
y=(x32)294+84y = (x - \frac{3}{2})^2 - \frac{9}{4} + \frac{8}{4}
y=(x32)214y = (x - \frac{3}{2})^2 - \frac{1}{4}
頂点: (32\frac{3}{2}, 14-\frac{1}{4}), 軸: x=32x = \frac{3}{2}
(5) y=2(x+1)(x+4)y = 2(x + 1)(x + 4)
y=2(x2+5x+4)y = 2(x^2 + 5x + 4)
y=2x2+10x+8y = 2x^2 + 10x + 8
y=2(x2+5x)+8y = 2(x^2 + 5x) + 8
y=2(x2+5x+254254)+8y = 2(x^2 + 5x + \frac{25}{4} - \frac{25}{4}) + 8
y=2(x+52)2252+8y = 2(x + \frac{5}{2})^2 - \frac{25}{2} + 8
y=2(x+52)2252+162y = 2(x + \frac{5}{2})^2 - \frac{25}{2} + \frac{16}{2}
y=2(x+52)292y = 2(x + \frac{5}{2})^2 - \frac{9}{2}
頂点: (-52\frac{5}{2}, -92\frac{9}{2}), 軸: x=52x = -\frac{5}{2}
(6) y=(2x+1)(1x)y = (2x + 1)(1 - x)
y=2x2x2+1xy = 2x - 2x^2 + 1 - x
y=2x2+x+1y = -2x^2 + x + 1
y=2(x212x)+1y = -2(x^2 - \frac{1}{2}x) + 1
y=2(x212x+116116)+1y = -2(x^2 - \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}) + 1
y=2(x14)2+18+1y = -2(x - \frac{1}{4})^2 + \frac{1}{8} + 1
y=2(x14)2+98y = -2(x - \frac{1}{4})^2 + \frac{9}{8}
頂点: (14\frac{1}{4}, 98\frac{9}{8}), 軸: x=14x = \frac{1}{4}

3. 最終的な答え

(1) 頂点: (2, 2), 軸: x=2x = 2
(2) 頂点: (34\frac{3}{4}, 258-\frac{25}{8}), 軸: x=34x = \frac{3}{4}
(3) 頂点: (-2, -2), 軸: x=2x = -2
(4) 頂点: (32\frac{3}{2}, 14-\frac{1}{4}), 軸: x=32x = \frac{3}{2}
(5) 頂点: (-52\frac{5}{2}, -92\frac{9}{2}), 軸: x=52x = -\frac{5}{2}
(6) 頂点: (14\frac{1}{4}, 98\frac{9}{8}), 軸: x=14x = \frac{1}{4}

「代数学」の関連問題