与えられた6つの二次関数について、グラフの軸と頂点を求める問題です。代数学二次関数平方完成グラフ頂点軸2025/7/291. 問題の内容与えられた6つの二次関数について、グラフの軸と頂点を求める問題です。2. 解き方の手順二次関数の式を平方完成の形に変形します。平方完成された式は y=a(x−p)2+qy = a(x-p)^2 + qy=a(x−p)2+q の形になり、このとき、頂点の座標は (p,q)(p, q)(p,q) で、軸は x=px = px=p となります。(1) y=13x2−43x+103y = \frac{1}{3}x^2 - \frac{4}{3}x + \frac{10}{3}y=31x2−34x+310y=13(x2−4x)+103y = \frac{1}{3}(x^2 - 4x) + \frac{10}{3}y=31(x2−4x)+310y=13(x2−4x+4−4)+103y = \frac{1}{3}(x^2 - 4x + 4 - 4) + \frac{10}{3}y=31(x2−4x+4−4)+310y=13(x−2)2−43+103y = \frac{1}{3}(x - 2)^2 - \frac{4}{3} + \frac{10}{3}y=31(x−2)2−34+310y=13(x−2)2+63y = \frac{1}{3}(x - 2)^2 + \frac{6}{3}y=31(x−2)2+36y=13(x−2)2+2y = \frac{1}{3}(x - 2)^2 + 2y=31(x−2)2+2(2) y=2x2−3x−2y = 2x^2 - 3x - 2y=2x2−3x−2y=2(x2−32x)−2y = 2(x^2 - \frac{3}{2}x) - 2y=2(x2−23x)−2y=2(x2−32x+916−916)−2y = 2(x^2 - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) - 2y=2(x2−23x+169−169)−2y=2(x−34)2−2(916)−2y = 2(x - \frac{3}{4})^2 - 2(\frac{9}{16}) - 2y=2(x−43)2−2(169)−2y=2(x−34)2−98−168y = 2(x - \frac{3}{4})^2 - \frac{9}{8} - \frac{16}{8}y=2(x−43)2−89−816y=2(x−34)2−258y = 2(x - \frac{3}{4})^2 - \frac{25}{8}y=2(x−43)2−825(3) y=12x2+2xy = \frac{1}{2}x^2 + 2xy=21x2+2xy=12(x2+4x)y = \frac{1}{2}(x^2 + 4x)y=21(x2+4x)y=12(x2+4x+4−4)y = \frac{1}{2}(x^2 + 4x + 4 - 4)y=21(x2+4x+4−4)y=12(x+2)2−2y = \frac{1}{2}(x + 2)^2 - 2y=21(x+2)2−2(4) y=(x−1)(x−2)y = (x - 1)(x - 2)y=(x−1)(x−2)y=x2−3x+2y = x^2 - 3x + 2y=x2−3x+2y=(x2−3x+94−94)+2y = (x^2 - 3x + \frac{9}{4} - \frac{9}{4}) + 2y=(x2−3x+49−49)+2y=(x−32)2−94+84y = (x - \frac{3}{2})^2 - \frac{9}{4} + \frac{8}{4}y=(x−23)2−49+48y=(x−32)2−14y = (x - \frac{3}{2})^2 - \frac{1}{4}y=(x−23)2−41(5) y=2(x+1)(x+4)y = 2(x + 1)(x + 4)y=2(x+1)(x+4)y=2(x2+5x+4)y = 2(x^2 + 5x + 4)y=2(x2+5x+4)y=2x2+10x+8y = 2x^2 + 10x + 8y=2x2+10x+8y=2(x2+5x)+8y = 2(x^2 + 5x) + 8y=2(x2+5x)+8y=2(x2+5x+254−254)+8y = 2(x^2 + 5x + \frac{25}{4} - \frac{25}{4}) + 8y=2(x2+5x+425−425)+8y=2(x+52)2−252+162y = 2(x + \frac{5}{2})^2 - \frac{25}{2} + \frac{16}{2}y=2(x+25)2−225+216y=2(x+52)2−92y = 2(x + \frac{5}{2})^2 - \frac{9}{2}y=2(x+25)2−29(6) y=(2x+1)(1−x)y = (2x + 1)(1 - x)y=(2x+1)(1−x)y=2x−2x2+1−xy = 2x - 2x^2 + 1 - xy=2x−2x2+1−xy=−2x2+x+1y = -2x^2 + x + 1y=−2x2+x+1y=−2(x2−12x)+1y = -2(x^2 - \frac{1}{2}x) + 1y=−2(x2−21x)+1y=−2(x2−12x+116−116)+1y = -2(x^2 - \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}) + 1y=−2(x2−21x+161−161)+1y=−2(x−14)2+216+1y = -2(x - \frac{1}{4})^2 + \frac{2}{16} + 1y=−2(x−41)2+162+1y=−2(x−14)2+18+88y = -2(x - \frac{1}{4})^2 + \frac{1}{8} + \frac{8}{8}y=−2(x−41)2+81+88y=−2(x−14)2+98y = -2(x - \frac{1}{4})^2 + \frac{9}{8}y=−2(x−41)2+893. 最終的な答え(1) 軸: x=2x = 2x=2, 頂点: (2,2)(2, 2)(2,2)(2) 軸: x=34x = \frac{3}{4}x=43, 頂点: (34,−258)(\frac{3}{4}, -\frac{25}{8})(43,−825)(3) 軸: x=−2x = -2x=−2, 頂点: (−2,−2)(-2, -2)(−2,−2)(4) 軸: x=32x = \frac{3}{2}x=23, 頂点: (32,−14)(\frac{3}{2}, -\frac{1}{4})(23,−41)(5) 軸: x=−52x = -\frac{5}{2}x=−25, 頂点: (−52,−92)(-\frac{5}{2}, -\frac{9}{2})(−25,−29)(6) 軸: x=14x = \frac{1}{4}x=41, 頂点: (14,98)(\frac{1}{4}, \frac{9}{8})(41,89)