与えられた6つの数式を展開せよ。

代数学展開多項式
2025/7/29
6問すべて解きます。

1. 問題の内容

与えられた6つの数式を展開せよ。

2. 解き方の手順

(1) (x2+yz)(3yz+2x2)(x^2 + yz)(3yz + 2x^2)
= 3x2yz+2x4+3y2z2+2x2yz3x^2yz + 2x^4 + 3y^2z^2 + 2x^2yz
= 2x4+5x2yz+3y2z22x^4 + 5x^2yz + 3y^2z^2
(2) (m22m1)2(m22m1)(m^2 - 2m - 1)^2 (m^2-2m-1) この問題は (m²-2m-1)² ですね。
(m22m1)2=(m22m1)(m22m1)(m^2 - 2m - 1)^2 = (m^2 - 2m - 1)(m^2 - 2m - 1)
= m42m3m22m3+4m2+2mm2+2m+1m^4 - 2m^3 - m^2 - 2m^3 + 4m^2 + 2m - m^2 + 2m + 1
= m44m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1
(3) (xy)2(x+y)2(x2+y2)2(x - y)^2(x + y)^2(x^2 + y^2)^2
= [(xy)(x+y)]2(x2+y2)2[(x - y)(x + y)]^2(x^2 + y^2)^2
= (x2y2)2(x2+y2)2(x^2 - y^2)^2(x^2 + y^2)^2
= [(x2y2)(x2+y2)]2[(x^2 - y^2)(x^2 + y^2)]^2
= (x4y4)2(x^4 - y^4)^2
= x82x4y4+y8x^8 - 2x^4y^4 + y^8
(4) (a+3)(a2)(a2a+6)(a + 3)(a - 2)(a^2 - a + 6)
= (a2+a6)(a2a+6)(a^2 + a - 6)(a^2 - a + 6)
= a4a3+6a2+a3a2+6a6a2+6a36a^4 - a^3 + 6a^2 + a^3 - a^2 + 6a - 6a^2 + 6a - 36
= a4a2+12a36a^4 - a^2 + 12a - 36
(5) (4xy+1)(3x+y1)(4x - y + 1)(3x + y - 1)
= 12x2+4xy4x3xyy2+y+3x+y112x^2 + 4xy - 4x - 3xy - y^2 + y + 3x + y - 1
= 12x2+xyxy2+2y112x^2 + xy - x - y^2 + 2y - 1
(6) (a+bcd)(abc+d)(a + b - c - d)(a - b - c + d)
= [a(c+db)][a(cd+b)][a - (c + d - b)][a - (c - d + b)]
= [a(c+(db))][a(c(db))][a - (c + (d-b))][a - (c-(d-b))]
= [(ac)(db)][(ac)+(db)][(a -c) - (d-b)][(a-c) + (d-b)]
= (ac)2(db)2(a-c)^2 - (d-b)^2
= a22ac+c2(d22bd+b2)a^2 - 2ac + c^2 - (d^2 - 2bd + b^2)
= a2b2+c2d22ac+2bda^2 - b^2 + c^2 - d^2 - 2ac + 2bd

3. 最終的な答え

(1) 2x4+5x2yz+3y2z22x^4 + 5x^2yz + 3y^2z^2
(2) m44m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1
(3) x82x4y4+y8x^8 - 2x^4y^4 + y^8
(4) a4a2+12a36a^4 - a^2 + 12a - 36
(5) 12x2+xyxy2+2y112x^2 + xy - x - y^2 + 2y - 1
(6) a2b2+c2d22ac+2bda^2 - b^2 + c^2 - d^2 - 2ac + 2bd