与えられた6つの数式を展開せよ。代数学展開多項式2025/7/296問すべて解きます。1. 問題の内容与えられた6つの数式を展開せよ。2. 解き方の手順(1) (x2+yz)(3yz+2x2)(x^2 + yz)(3yz + 2x^2)(x2+yz)(3yz+2x2)= 3x2yz+2x4+3y2z2+2x2yz3x^2yz + 2x^4 + 3y^2z^2 + 2x^2yz3x2yz+2x4+3y2z2+2x2yz= 2x4+5x2yz+3y2z22x^4 + 5x^2yz + 3y^2z^22x4+5x2yz+3y2z2(2) (m2−2m−1)2(m2−2m−1)(m^2 - 2m - 1)^2 (m^2-2m-1)(m2−2m−1)2(m2−2m−1) この問題は (m²-2m-1)² ですね。(m2−2m−1)2=(m2−2m−1)(m2−2m−1)(m^2 - 2m - 1)^2 = (m^2 - 2m - 1)(m^2 - 2m - 1)(m2−2m−1)2=(m2−2m−1)(m2−2m−1)= m4−2m3−m2−2m3+4m2+2m−m2+2m+1m^4 - 2m^3 - m^2 - 2m^3 + 4m^2 + 2m - m^2 + 2m + 1m4−2m3−m2−2m3+4m2+2m−m2+2m+1= m4−4m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1m4−4m3+2m2+4m+1(3) (x−y)2(x+y)2(x2+y2)2(x - y)^2(x + y)^2(x^2 + y^2)^2(x−y)2(x+y)2(x2+y2)2= [(x−y)(x+y)]2(x2+y2)2[(x - y)(x + y)]^2(x^2 + y^2)^2[(x−y)(x+y)]2(x2+y2)2= (x2−y2)2(x2+y2)2(x^2 - y^2)^2(x^2 + y^2)^2(x2−y2)2(x2+y2)2= [(x2−y2)(x2+y2)]2[(x^2 - y^2)(x^2 + y^2)]^2[(x2−y2)(x2+y2)]2= (x4−y4)2(x^4 - y^4)^2(x4−y4)2= x8−2x4y4+y8x^8 - 2x^4y^4 + y^8x8−2x4y4+y8(4) (a+3)(a−2)(a2−a+6)(a + 3)(a - 2)(a^2 - a + 6)(a+3)(a−2)(a2−a+6)= (a2+a−6)(a2−a+6)(a^2 + a - 6)(a^2 - a + 6)(a2+a−6)(a2−a+6)= a4−a3+6a2+a3−a2+6a−6a2+6a−36a^4 - a^3 + 6a^2 + a^3 - a^2 + 6a - 6a^2 + 6a - 36a4−a3+6a2+a3−a2+6a−6a2+6a−36= a4−a2+12a−36a^4 - a^2 + 12a - 36a4−a2+12a−36(5) (4x−y+1)(3x+y−1)(4x - y + 1)(3x + y - 1)(4x−y+1)(3x+y−1)= 12x2+4xy−4x−3xy−y2+y+3x+y−112x^2 + 4xy - 4x - 3xy - y^2 + y + 3x + y - 112x2+4xy−4x−3xy−y2+y+3x+y−1= 12x2+xy−x−y2+2y−112x^2 + xy - x - y^2 + 2y - 112x2+xy−x−y2+2y−1(6) (a+b−c−d)(a−b−c+d)(a + b - c - d)(a - b - c + d)(a+b−c−d)(a−b−c+d)= [a−(c+d−b)][a−(c−d+b)][a - (c + d - b)][a - (c - d + b)][a−(c+d−b)][a−(c−d+b)]= [a−(c+(d−b))][a−(c−(d−b))][a - (c + (d-b))][a - (c-(d-b))][a−(c+(d−b))][a−(c−(d−b))]= [(a−c)−(d−b)][(a−c)+(d−b)][(a -c) - (d-b)][(a-c) + (d-b)][(a−c)−(d−b)][(a−c)+(d−b)]= (a−c)2−(d−b)2(a-c)^2 - (d-b)^2(a−c)2−(d−b)2= a2−2ac+c2−(d2−2bd+b2)a^2 - 2ac + c^2 - (d^2 - 2bd + b^2)a2−2ac+c2−(d2−2bd+b2)= a2−b2+c2−d2−2ac+2bda^2 - b^2 + c^2 - d^2 - 2ac + 2bda2−b2+c2−d2−2ac+2bd3. 最終的な答え(1) 2x4+5x2yz+3y2z22x^4 + 5x^2yz + 3y^2z^22x4+5x2yz+3y2z2(2) m4−4m3+2m2+4m+1m^4 - 4m^3 + 2m^2 + 4m + 1m4−4m3+2m2+4m+1(3) x8−2x4y4+y8x^8 - 2x^4y^4 + y^8x8−2x4y4+y8(4) a4−a2+12a−36a^4 - a^2 + 12a - 36a4−a2+12a−36(5) 12x2+xy−x−y2+2y−112x^2 + xy - x - y^2 + 2y - 112x2+xy−x−y2+2y−1(6) a2−b2+c2−d2−2ac+2bda^2 - b^2 + c^2 - d^2 - 2ac + 2bda2−b2+c2−d2−2ac+2bd