与えられた式 $\frac{2}{\sqrt{2}} - \frac{2\sqrt{6} - 2}{\sqrt{3}}$ を計算せよ。算数計算分母の有理化平方根式の計算2025/7/311. 問題の内容与えられた式 22−26−23\frac{2}{\sqrt{2}} - \frac{2\sqrt{6} - 2}{\sqrt{3}}22−326−2 を計算せよ。2. 解き方の手順まず、各項の分母を有理化します。第1項:22=2×22×2=222=2\frac{2}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2}22=2×22×2=222=2第2項:26−23=(26−2)×33×3=218−233=2×32−233=62−233=22−233\frac{2\sqrt{6} - 2}{\sqrt{3}} = \frac{(2\sqrt{6} - 2) \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{18} - 2\sqrt{3}}{3} = \frac{2 \times 3\sqrt{2} - 2\sqrt{3}}{3} = \frac{6\sqrt{2} - 2\sqrt{3}}{3} = 2\sqrt{2} - \frac{2\sqrt{3}}{3}326−2=3×3(26−2)×3=3218−23=32×32−23=362−23=22−323したがって、22−26−23=2−(22−233)=2−22+233=−2+233\frac{2}{\sqrt{2}} - \frac{2\sqrt{6} - 2}{\sqrt{3}} = \sqrt{2} - (2\sqrt{2} - \frac{2\sqrt{3}}{3}) = \sqrt{2} - 2\sqrt{2} + \frac{2\sqrt{3}}{3} = -\sqrt{2} + \frac{2\sqrt{3}}{3}22−326−2=2−(22−323)=2−22+323=−2+3233. 最終的な答え−2+233-\sqrt{2} + \frac{2\sqrt{3}}{3}−2+323