正八角形の3個の頂点を結んで作られる三角形について、以下の個数を求める問題です。 (1) 正八角形と2辺を共有する三角形の個数 (2) 正八角形と辺を共有しない三角形の個数

幾何学正多角形組み合わせ図形三角形
2025/8/2

1. 問題の内容

正八角形の3個の頂点を結んで作られる三角形について、以下の個数を求める問題です。
(1) 正八角形と2辺を共有する三角形の個数
(2) 正八角形と辺を共有しない三角形の個数

2. 解き方の手順

(1) 正八角形と2辺を共有する三角形の個数
正八角形のある頂点から2辺が伸びているので、そのような頂点の数がそのまま三角形の数になります。正八角形には8つの頂点があるので、求める三角形の個数は8個です。
(2) 正八角形と辺を共有しない三角形の個数
まず、正八角形の頂点から3つを選んで三角形を作る組み合わせの総数を求めます。これは、88個から33個を選ぶ組み合わせなので、
{}_{8}C_3 = \frac{8!}{3!(8-3)!} = \frac{8!}{3!5!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56
となります。
次に、正八角形と1辺だけを共有する三角形の個数を求めます。
共有する1辺を選びます。これは8通りあります。その辺の両端の頂点以外の頂点を一つ選びます。両端の頂点を除くと、頂点は6つ残ります。ただし、両端の頂点に隣接する頂点を選んでしまうと2辺を共有することになってしまうので、それらの2つの頂点を除きます。したがって、選べる頂点は62=46-2=4個です。したがって、共有する辺が1つである三角形の数は8×4=328 \times 4 = 32個です。
次に、正八角形と2辺を共有する三角形の個数は、(1)で求めたように8個です。
したがって、正八角形と少なくとも1辺を共有する三角形の個数は 32+8=4032 + 8 = 40 個です。
正八角形と辺を共有しない三角形の個数は、三角形の総数から少なくとも1辺を共有する三角形の個数を引けば求められます。
56 - 40 = 16

3. 最終的な答え

(1) 8個
(2) 16個

「幾何学」の関連問題

三角形ABCにおいて、$\angle B = 32^\circ$, $\angle C = 75^\circ$である。点Oは三角形の内部の点であり、線分AOがある。$\angle x$の大きさを求める...

三角形内角角度内心
2025/8/2

三角形ABCにおいて、∠BACの内角を$32^\circ$、∠BCAの内角を$38^\circ$とする。点Iは三角形ABCの内部にある。∠IBC = $x$の値を求める問題。

三角形内角角度内心
2025/8/2

図のような鈍角三角形ABCにおいて、以下の式が成り立つことを証明する問題です。 $BC^2 = CD^2 + BD^2$ $CD^2 = (b \sin A)^2$ $BD^2 = (c - b \c...

幾何三角比三平方の定理鈍角三角形
2025/8/2

三角形ABCにおいて、$AB = 4$, $BC = 5$, $CA = 6$である。三角形ABCの外接円をKとし、Kの中心をOとする。点Cから点BにおけるKの接線に垂線CDを下ろし、直線CDとKとの...

三角形外接円余弦定理正弦定理接弦定理方べきの定理
2025/8/2

座標平面上に2点 $P(\cos\theta, \sin\theta)$ と $Q(\cos5\theta, \sin5\theta)$ があり、原点を $O$ とする。ただし、$0 < \theta...

三角関数面積最大値座標平面
2025/8/2

2つの円 $O$ と $O'$ が点 $P$ で外接している。直線 $l, m, n$ は共通接線であり、円 $O$ と $O'$ の半径はそれぞれ10と5である。 (1) 線分 $AB$ の長さを求...

接線三平方の定理外接
2025/8/2

半径10と5の2つの円O, O'が点Pで外接しており、A, Bは共通接線l, mの接点である。 (1) 線分ABの長さを求めよ。 (2) 線分CDの長さを求めよ。(図にはCDは描かれていない)

接線三平方の定理相似図形
2025/8/2

関数 $y=x^2$ のグラフと直線 $y=-x+6$ の交点が A, B, 関数 $y=x^2$ のグラフと直線 $y=-x+12$ の交点が C, D であるとき、台形 ABCD の面積を求め、点...

台形面積交点二次関数直線の式
2025/8/2

半径3cmの球と、その球がちょうど入る円柱、円柱にちょうど入る円錐がある。 (1) 球、円柱、円錐の体積の比を求めよ。 (2) 球と円柱の表面積の比を求めよ。

体積表面積円柱円錐
2025/8/2

半径 $r$ m の円形の公園の周囲に、幅 $a$ m の道がある。道の面積を $S$ m$^2$, 道の真ん中を通る円の周の長さを $l$ m とするとき、$S = al$ となることを証明する。空...

面積円周証明
2025/8/2