与えられた2つの数列の和を求める問題です。 (1) $2^2 + 4^2 + 6^2 + \dots + (2n)^2$ (2) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$代数学数列Σ記号公式計算2025/8/61. 問題の内容与えられた2つの数列の和を求める問題です。(1) 22+42+62+⋯+(2n)22^2 + 4^2 + 6^2 + \dots + (2n)^222+42+62+⋯+(2n)2(2) 12+32+52+⋯+(2n−1)21^2 + 3^2 + 5^2 + \dots + (2n-1)^212+32+52+⋯+(2n−1)22. 解き方の手順(1)数列の一般項は (2k)2=4k2(2k)^2 = 4k^2(2k)2=4k2と表せるので、求める和は∑k=1n(2k)2=∑k=1n4k2=4∑k=1nk2\sum_{k=1}^n (2k)^2 = \sum_{k=1}^n 4k^2 = 4 \sum_{k=1}^n k^2∑k=1n(2k)2=∑k=1n4k2=4∑k=1nk2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)を用いると、4∑k=1nk2=4⋅n(n+1)(2n+1)6=2n(n+1)(2n+1)34 \sum_{k=1}^n k^2 = 4 \cdot \frac{n(n+1)(2n+1)}{6} = \frac{2n(n+1)(2n+1)}{3}4∑k=1nk2=4⋅6n(n+1)(2n+1)=32n(n+1)(2n+1)(2)数列の一般項は (2k−1)2(2k-1)^2(2k−1)2と表せるので、求める和は∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n1\sum_{k=1}^n (2k-1)^2 = \sum_{k=1}^n (4k^2 - 4k + 1) = 4\sum_{k=1}^n k^2 - 4\sum_{k=1}^n k + \sum_{k=1}^n 1∑k=1n(2k−1)2=∑k=1n(4k2−4k+1)=4∑k=1nk2−4∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)、∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)、∑k=1n1=n\sum_{k=1}^n 1 = n∑k=1n1=nを用いると、4⋅n(n+1)(2n+1)6−4⋅n(n+1)2+n=2n(n+1)(2n+1)3−2n(n+1)+n4 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2} + n = \frac{2n(n+1)(2n+1)}{3} - 2n(n+1) + n4⋅6n(n+1)(2n+1)−4⋅2n(n+1)+n=32n(n+1)(2n+1)−2n(n+1)+n=2n(n+1)(2n+1)−6n(n+1)+3n3=n(2(n+1)(2n+1)−6(n+1)+3)3= \frac{2n(n+1)(2n+1) - 6n(n+1) + 3n}{3} = \frac{n(2(n+1)(2n+1) - 6(n+1) + 3)}{3}=32n(n+1)(2n+1)−6n(n+1)+3n=3n(2(n+1)(2n+1)−6(n+1)+3)=n(2(2n2+3n+1)−6n−6+3)3=n(4n2+6n+2−6n−3)3=n(4n2−1)3=n(2n−1)(2n+1)3= \frac{n(2(2n^2+3n+1) - 6n - 6 + 3)}{3} = \frac{n(4n^2+6n+2 - 6n - 3)}{3} = \frac{n(4n^2-1)}{3} = \frac{n(2n-1)(2n+1)}{3}=3n(2(2n2+3n+1)−6n−6+3)=3n(4n2+6n+2−6n−3)=3n(4n2−1)=3n(2n−1)(2n+1)3. 最終的な答え(1) 2n(n+1)(2n+1)3\frac{2n(n+1)(2n+1)}{3}32n(n+1)(2n+1)(2) n(2n−1)(2n+1)3\frac{n(2n-1)(2n+1)}{3}3n(2n−1)(2n+1)