点Pと点Qがそれぞれx軸とy軸の正方向に一定の速度で進むとき、ある時刻におけるPとQの位置が与えられている。このとき、PとQの距離が最小となるのは、その時刻から何秒後であるかを求める問題です。

幾何学距離座標微分最適化最小値
2025/8/13

1. 問題の内容

点Pと点Qがそれぞれx軸とy軸の正方向に一定の速度で進むとき、ある時刻におけるPとQの位置が与えられている。このとき、PとQの距離が最小となるのは、その時刻から何秒後であるかを求める問題です。

2. 解き方の手順

時刻をtt秒後とする。
点Pは(1,0)からx軸の正の方向に1秒間に4進むので、tt秒後の点Pの座標は(1+4t,0)(1+4t, 0)となる。
点Qは(0,-3)からy軸の正の方向に1秒間に3進むので、tt秒後の点Qの座標は(0,3+3t)(0, -3+3t)となる。
PとQの距離の2乗をLLとすると、
L=(1+4t0)2+(0(3+3t))2=(1+4t)2+(33t)2L = (1+4t - 0)^2 + (0 - (-3+3t))^2 = (1+4t)^2 + (3-3t)^2
L=1+8t+16t2+918t+9t2=25t210t+10L = 1 + 8t + 16t^2 + 9 - 18t + 9t^2 = 25t^2 - 10t + 10
LLを最小にするttを求めるために、LLttで微分する。
dLdt=50t10\frac{dL}{dt} = 50t - 10
dLdt=0\frac{dL}{dt} = 0となるttを求める。
50t10=050t - 10 = 0より、t=1050=15t = \frac{10}{50} = \frac{1}{5}
t=15t = \frac{1}{5}のとき、LLは最小となる。

3. 最終的な答え

1/5秒後

「幾何学」の関連問題

半径2の円O1と半径1の円O2が外接しており、直線lにそれぞれ点A, Bで接している。 (1) O1O2の長さを求める。 (2) ABの長さを求める。 (3) 2円が外接している点をPとし、Pを通り2...

接線三平方の定理面積
2025/8/13

円 $C_1: (x+2)^2 + (y-1)^2 = 1$ と、円 $C_2: x^2 + (y-3)^2 = a^2$ が接するとき、$a$ の値を求めよ。 また、円 $C_1: (x+2)^2 ...

距離接する共有点
2025/8/13

同じ大きさの円が6つ、長方形の中にぴったり入っている。円の半径が5cmのとき、長方形の面積を求めよ。

長方形面積図形
2025/8/13

円周の長さが 31.4 cm である円の直径の長さを求めなさい。ただし、円周率は 3.14 とする。

円周直径円周率算数
2025/8/13

円 $x^2 + y^2 = 5$ が直線 $y = x + 2$ から切り取る線分の長さを求めよ。

直線線分の長さ三平方の定理
2025/8/13

問題は、二等辺三角形を底面とする三角柱において、以下の2つの問いに答えるものです。 (ア)三角柱の表面積として正しいものを選択肢から選ぶ。 (イ)点Gから3点D, F, Hを通る平面に引いた垂線と、3...

三角柱表面積空間図形三平方の定理
2025/8/13

以下の三角関数の値を求める問題です。 (1) $\sin{\frac{5}{12}\pi}$ (2) $\cos{\frac{\pi}{12}}$ (3) $\tan{\frac{13}{12}\pi...

三角関数三角関数の加法定理三角関数の合成ラジアン
2025/8/13

問題は、平行四辺形ABCDがあり、A(-4/3, 2), C(4, 4)である。点Bはx軸上にあり、直線BCの傾きは3/2である。 (1) 点Bの座標を求める。 (2) 原点を通り、平行四辺形ABCD...

平行四辺形座標平面面積直線傾き
2025/8/13

2つの直線 $l: y = x$ と $m: y = -2x + 12$ が点Pで交わっている。 (1) 点Pの座標を求める。 (2) $k = 3$ のとき、直線 $y = k$ と直線 $l, m...

座標平面直線交点線分の長さ正方形
2025/8/13

円に内接する四角形ABCDにおいて、AB=6, AD=4, AE=3, $\angle BAC = \angle DAC$であるとき、以下の問いに答えます。 (1) BE:EDを求めます。 (2) $...

四角形角の二等分線の定理相似方べきの定理余弦定理
2025/8/13