次の方程式を解く。 (1) $x^4 - 7x^2 + 12 = 0$ (2) $x^3 - 6x^2 + 11x - 6 = 0$ (3) $x^3 - x + 6 = 0$代数学方程式多項式因数分解複素数2025/8/141. 問題の内容次の方程式を解く。(1) x4−7x2+12=0x^4 - 7x^2 + 12 = 0x4−7x2+12=0(2) x3−6x2+11x−6=0x^3 - 6x^2 + 11x - 6 = 0x3−6x2+11x−6=0(3) x3−x+6=0x^3 - x + 6 = 0x3−x+6=02. 解き方の手順(1) x4−7x2+12=0x^4 - 7x^2 + 12 = 0x4−7x2+12=0x2=tx^2 = tx2=t とおく。t2−7t+12=0t^2 - 7t + 12 = 0t2−7t+12=0(t−3)(t−4)=0(t-3)(t-4) = 0(t−3)(t−4)=0t=3,4t = 3, 4t=3,4x2=3,4x^2 = 3, 4x2=3,4x=±3,±2x = \pm \sqrt{3}, \pm 2x=±3,±2(2) x3−6x2+11x−6=0x^3 - 6x^2 + 11x - 6 = 0x3−6x2+11x−6=0P(x)=x3−6x2+11x−6P(x) = x^3 - 6x^2 + 11x - 6P(x)=x3−6x2+11x−6とおくと、P(1)=1−6+11−6=0P(1) = 1 - 6 + 11 - 6 = 0P(1)=1−6+11−6=0だから、x−1x-1x−1を因数に持つ。x3−6x2+11x−6=(x−1)(x2−5x+6)=(x−1)(x−2)(x−3)=0x^3 - 6x^2 + 11x - 6 = (x-1)(x^2 - 5x + 6) = (x-1)(x-2)(x-3) = 0x3−6x2+11x−6=(x−1)(x2−5x+6)=(x−1)(x−2)(x−3)=0x=1,2,3x = 1, 2, 3x=1,2,3(3) x3−x+6=0x^3 - x + 6 = 0x3−x+6=0P(x)=x3−x+6P(x) = x^3 - x + 6P(x)=x3−x+6とおくと、P(−2)=−8+2+6=0P(-2) = -8 + 2 + 6 = 0P(−2)=−8+2+6=0だから、x+2x+2x+2を因数に持つ。x3−x+6=(x+2)(x2−2x+3)=0x^3 - x + 6 = (x+2)(x^2 - 2x + 3) = 0x3−x+6=(x+2)(x2−2x+3)=0x+2=0x+2 = 0x+2=0 または x2−2x+3=0x^2 - 2x + 3 = 0x2−2x+3=0x=−2x = -2x=−2x2−2x+3=0x^2 - 2x + 3 = 0x2−2x+3=0を解くと、x=2±4−122=2±−82=1±i2x = \frac{2 \pm \sqrt{4 - 12}}{2} = \frac{2 \pm \sqrt{-8}}{2} = 1 \pm i\sqrt{2}x=22±4−12=22±−8=1±i23. 最終的な答え(1) x=±3,±2x = \pm \sqrt{3}, \pm 2x=±3,±2(2) x=1,2,3x = 1, 2, 3x=1,2,3(3) x=−2,1±i2x = -2, 1 \pm i\sqrt{2}x=−2,1±i2