与えられた式 $x^4 + x^2 + 1$ を因数分解する問題です。

代数学因数分解多項式平方完成
2025/8/19

1. 問題の内容

与えられた式 x4+x2+1x^4 + x^2 + 1 を因数分解する問題です。

2. 解き方の手順

この式を因数分解するために、平方完成の考え方を利用します。
まず、x4+x2+1x^4 + x^2 + 1x2x^2 を足して、全体から x2x^2 を引くことを考えます。これにより、式は以下のように変形されます。
x4+x2+1=x4+2x2+1x2x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2
x4+2x2+1x^4 + 2x^2 + 1(x2+1)2(x^2 + 1)^2 と因数分解できます。したがって、
x4+x2+1=(x2+1)2x2x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2
これは A2B2A^2 - B^2 の形をしているので、和と差の積の公式 A2B2=(A+B)(AB)A^2 - B^2 = (A + B)(A - B) を適用できます。ここで、A=x2+1A = x^2 + 1B=xB = x とすると、
(x2+1)2x2=(x2+1+x)(x2+1x)(x^2 + 1)^2 - x^2 = (x^2 + 1 + x)(x^2 + 1 - x)
整理すると、
(x2+x+1)(x2x+1)(x^2 + x + 1)(x^2 - x + 1)

3. 最終的な答え

x4+x2+1=(x2+x+1)(x2x+1)x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)

「代数学」の関連問題

与えられた2次方程式について、それぞれ指定された条件を満たすような定数 $m$ の値の範囲を求めます。 (1) $3x^2 - x + m = 0$ が実数解をもたない。 (2) $2x^2 + x ...

二次方程式判別式不等式
2025/8/19

与えられた条件を満たす2次関数を求める問題です。 (1) 頂点の座標と通る1点の座標が与えられたとき。 (2) 軸の方程式と通る2点の座標が与えられたとき。 (3) 通る3点の座標が与えられたとき。

二次関数2次関数グラフ方程式
2025/8/19

与えられた式 $(32xy - 12x^2y) \div 4xy$ を計算し、簡略化する。

式の計算因数分解多項式
2025/8/19

関数 $y = x^2 - 2ax + 2a^2$ ($0 \le x \le 2$)について、以下の問いに答えます。 (1) $a$ の値の範囲によって、最小値を求めます。 * [1] $a <...

二次関数最大値最小値場合分け平方完成
2025/8/19

問題は、「xの3倍に2を加えた数は、yの5倍以上である。」という文を不等式で表すことです。

不等式一次式
2025/8/19

毎分60mの速さで$x$分歩いたときの道のりが、$y$mより短いことを不等式で表す問題です。

不等式一次不等式文章問題道のり
2025/8/19

問題は、「xに5を加えた数は、yの6倍より大きい」という文を不等式で表現することです。

不等式数式表現一次不等式
2025/8/19

与えられた式を計算して、簡略化します。 $-6(-x-2)+7(1-x)$

式の計算分配法則同類項
2025/8/19

与えられた式 $x^2 + 6x + 9$ を因数分解してください。

因数分解二次式展開
2025/8/19

与えられた連立方程式を解く問題がいくつかあります。具体的には以下の問題が含まれています。 (1) $\begin{cases} 2x - 5y = 20 \\ -3x - y = -2 \end{ca...

連立方程式一次方程式
2025/8/19