8個の異なる色のおはじきを、画用紙に書かれた円の上に並べる方法は何通りあるかを求める問題です。

離散数学組み合わせ円順列順列
2025/4/7

1. 問題の内容

8個の異なる色のおはじきを、画用紙に書かれた円の上に並べる方法は何通りあるかを求める問題です。

2. 解き方の手順

円順列の問題として考えます。
n個の異なるものを円形に並べる方法は、(n-1)! 通りです。
この問題では、n = 8なので、並べ方は (8-1)! 通りとなります。
(8-1)! = 7!
7! を計算します。
7!=7×6×5×4×3×2×1=50407! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040

3. 最終的な答え

5040 通り

「離散数学」の関連問題

男子4人と女子4人が手をつないで輪を作るとき、以下の2つの場合の数を求めます。 (1) 女子4人が続いて並ぶ方法 (2) 男女が交互に並ぶ方法

順列組み合わせ円順列場合の数
2025/4/20

9冊の異なる本を以下の条件で分ける方法の数を求めます。 (1) 3冊ずつ3人に分ける。 (2) 3冊ずつ3組に分ける。 (3) 2冊、3冊、4冊の3組に分ける。 (4) 2冊、2冊、5冊の3組に分ける...

組み合わせ場合の数順列
2025/4/20

四国の地図を、A, B, C, Dの4つの県に分け、赤、青、緑、黄の4色を使って塗り分ける問題です。 (21) Dを青で塗った場合、残りのA, B, Cの塗り方は何通りあるか。 (22) BとDのどち...

場合の数組み合わせ塗り分け
2025/4/20

四国の地図の4つの県A, B, C, Dを、赤、青、緑、黄の4色で塗り分ける問題です。 (21) Dを青で塗ったとき、残りのA, B, Cの塗り方は何通りか。 (22) BとDのどちらか1つを青で、残...

場合の数組み合わせ塗り分け
2025/4/20

問題8は、ド・モルガンの法則の一つである $\overline{A \cap B} = \overline{A} \cup \overline{B}$ が成り立つことを、図を用いて確認することです。 ...

集合ベン図ド・モルガンの法則論理
2025/4/20

与えられた集合のすべての部分集合を列挙する問題です。 (1) 集合 $\{1, 2\}$ (2) 集合 $\{a, b, c\}$

集合論部分集合集合
2025/4/19

2つの集合の関係を包含関係 ($\subset$) または等号 (=) を用いて表現する問題です。

集合包含関係部分集合集合の要素
2025/4/19

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$、集合 $A = \{2, 4, 6\}$、集合 $B = \{1, 3, 4, 7\}$ が与えられたとき、以下の集合...

集合補集合共通部分和集合
2025/4/19

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$、集合 $A = \{1, 3, 5, 6, 7, 9\}$、集合 $B = \{2, 3, 4, 5, 7\}$ が与...

集合集合演算共通部分補集合
2025/4/19

集合 $A$ と $B$ が与えられたとき、共通部分 $A \cap B$ と和集合 $A \cup B$ を求める問題です。2つのケースがあります。

集合共通部分和集合集合演算
2025/4/19