次の定積分を計算します。 $\int_{0}^{2} (12x^2 - 4x + 3) \, dx + \int_{-1}^{0} (12x^2 - 4x + 3) \, dx$解析学定積分積分多項式2025/4/71. 問題の内容次の定積分を計算します。∫02(12x2−4x+3) dx+∫−10(12x2−4x+3) dx\int_{0}^{2} (12x^2 - 4x + 3) \, dx + \int_{-1}^{0} (12x^2 - 4x + 3) \, dx∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx2. 解き方の手順まず、それぞれの定積分を計算します。∫(12x2−4x+3) dx=12⋅x33−4⋅x22+3x+C=4x3−2x2+3x+C\int (12x^2 - 4x + 3) \, dx = 12 \cdot \frac{x^3}{3} - 4 \cdot \frac{x^2}{2} + 3x + C = 4x^3 - 2x^2 + 3x + C∫(12x2−4x+3)dx=12⋅3x3−4⋅2x2+3x+C=4x3−2x2+3x+C次に、それぞれの定積分の値を計算します。∫02(12x2−4x+3) dx=[4x3−2x2+3x]02=(4(2)3−2(2)2+3(2))−(0)=4(8)−2(4)+6=32−8+6=30\int_{0}^{2} (12x^2 - 4x + 3) \, dx = [4x^3 - 2x^2 + 3x]_{0}^{2} = (4(2)^3 - 2(2)^2 + 3(2)) - (0) = 4(8) - 2(4) + 6 = 32 - 8 + 6 = 30∫02(12x2−4x+3)dx=[4x3−2x2+3x]02=(4(2)3−2(2)2+3(2))−(0)=4(8)−2(4)+6=32−8+6=30∫−10(12x2−4x+3) dx=[4x3−2x2+3x]−10=(0)−(4(−1)3−2(−1)2+3(−1))=−(4(−1)−2(1)−3)=−(−4−2−3)=−(−9)=9\int_{-1}^{0} (12x^2 - 4x + 3) \, dx = [4x^3 - 2x^2 + 3x]_{-1}^{0} = (0) - (4(-1)^3 - 2(-1)^2 + 3(-1)) = -(4(-1) - 2(1) - 3) = -(-4 - 2 - 3) = -(-9) = 9∫−10(12x2−4x+3)dx=[4x3−2x2+3x]−10=(0)−(4(−1)3−2(−1)2+3(−1))=−(4(−1)−2(1)−3)=−(−4−2−3)=−(−9)=9最後に、これらの値を足し合わせます。∫02(12x2−4x+3) dx+∫−10(12x2−4x+3) dx=30+9=39\int_{0}^{2} (12x^2 - 4x + 3) \, dx + \int_{-1}^{0} (12x^2 - 4x + 3) \, dx = 30 + 9 = 39∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx=30+9=39または、積分区間を結合して計算することもできます。∫−12(12x2−4x+3) dx=[4x3−2x2+3x]−12=(4(2)3−2(2)2+3(2))−(4(−1)3−2(−1)2+3(−1))=(32−8+6)−(−4−2−3)=30−(−9)=30+9=39\int_{-1}^{2} (12x^2 - 4x + 3) \, dx = [4x^3 - 2x^2 + 3x]_{-1}^{2} = (4(2)^3 - 2(2)^2 + 3(2)) - (4(-1)^3 - 2(-1)^2 + 3(-1)) = (32 - 8 + 6) - (-4 - 2 - 3) = 30 - (-9) = 30 + 9 = 39∫−12(12x2−4x+3)dx=[4x3−2x2+3x]−12=(4(2)3−2(2)2+3(2))−(4(−1)3−2(−1)2+3(−1))=(32−8+6)−(−4−2−3)=30−(−9)=30+9=393. 最終的な答え39