三角形ABCにおいて、$BC=7$, $CA=3$, $\angle A = 60^\circ$ のとき、$AB$の長さを求めよ。

幾何学三角形余弦定理辺の長さ
2025/4/8

1. 問題の内容

三角形ABCにおいて、BC=7BC=7, CA=3CA=3, A=60\angle A = 60^\circ のとき、ABABの長さを求めよ。

2. 解き方の手順

余弦定理を用いてABABの長さを求める。余弦定理より、
BC2=AB2+CA22ABCAcosABC^2 = AB^2 + CA^2 - 2 \cdot AB \cdot CA \cdot \cos A
この式に与えられた値を代入すると、
72=AB2+322AB3cos607^2 = AB^2 + 3^2 - 2 \cdot AB \cdot 3 \cdot \cos 60^\circ
49=AB2+96AB1249 = AB^2 + 9 - 6 \cdot AB \cdot \frac{1}{2}
49=AB2+93AB49 = AB^2 + 9 - 3AB
AB23AB40=0AB^2 - 3AB - 40 = 0
この2次方程式を解く。
(AB8)(AB+5)=0(AB - 8)(AB + 5) = 0
AB=8AB = 8またはAB=5AB = -5
ABABは辺の長さなので正の値を取る。したがって、AB=8AB = 8

3. 最終的な答え

8

「幾何学」の関連問題

四面体OABCにおいて、$OA = 2\sqrt{5}$, $OB = OC = \sqrt{5}$, $BC = 2\sqrt{3}$, $AB = AC$, $\angle AOC = 120^\...

空間図形四面体余弦定理ベクトルの内積面積
2025/6/21

四面体OABCにおいて、$OA = 2\sqrt{5}$、$OB = OC = \sqrt{5}$、$BC = 2\sqrt{3}$、$AB = AC$、$\angle AOC = 120^\circ...

空間図形四面体余弦定理三平方の定理体積面積
2025/6/21

四面体 OABC において、OA = $2\sqrt{5}$, OB = OC = $\sqrt{5}$, BC = $2\sqrt{3}$, AB = AC, ∠AOC = 120°とし、BCの中点...

空間図形四面体余弦定理三角比ベクトル
2025/6/21

問題は2つの部分から構成されています。 (1) 正三角形を底面とする四面体OABCが球Sに内接している場合について、AHの長さと球Sの半径を求める。ここで、OA=OB=OC=2であり、三角形ABCの一...

四面体空間図形外接球余弦定理面積
2025/6/21

問題1は、1辺の長さが1の正三角形ABCを底面とする四面体OABCが球Sに内接しており、OA=OB=OC=2であるとき、線分AHの長さと球Sの半径を求める問題です。頂点Oから三角形ABCに下ろした垂線...

空間図形四面体外接球余弦定理三平方の定理面積
2025/6/21

問題1:一辺の長さが1の正三角形ABCを底面とする四面体OABCが球Sに内接している。OA=OB=OC=2とする。頂点Oから三角形ABCに下ろした垂線の足をHとするとき、線分AHの長さと球Sの半径を求...

四面体正三角形空間図形余弦定理体積面積
2025/6/21

2点A(2, 1), B(5, 2)に対して、$2AP = BP$を満たすx軸上の点Pの座標を求める問題です。

座標平面ベクトル距離方程式
2025/6/21

円の方程式 $x^2 + y^2 - 2y = 0$ を極方程式で表す問題です。

極座標方程式三角関数
2025/6/21

大きい正方形と小さい正方形を組み合わせた図形において、大きい正方形の一辺が55cm、小さい正方形の一辺が15cmであるとき、黒色に塗られている部分の面積を求める。

正方形面積図形
2025/6/21

右図のように、大きい正方形と小さい正方形が組み合わさっている。大きい正方形の一辺の長さは $55cm$ であり、小さい正方形の一辺の長さは $15cm$ である。黒色で塗られている部分の面積を求めよ。

正方形面積図形
2025/6/21