半径 $r$, 中心角 $a$ 度のおうぎ形の弧の長さ $l$ と面積 $S$ を求める問題です。$l$ と $S$ をそれぞれ $l = 2\pi r \times [\ ]$, $S = \pi r^2 \times [\ ]$ の形で表すときの括弧の中身を答えます。

幾何学おうぎ形弧の長さ面積
2025/4/9

1. 問題の内容

半径 rr, 中心角 aa 度のおうぎ形の弧の長さ ll と面積 SS を求める問題です。llSS をそれぞれ l=2πr×[ ]l = 2\pi r \times [\ ], S=πr2×[ ]S = \pi r^2 \times [\ ] の形で表すときの括弧の中身を答えます。

2. 解き方の手順

おうぎ形の弧の長さと面積は、円周または円の面積に、中心角が円全体(360度)に占める割合を掛け合わせることで求められます。
* 弧の長さ ll は、円周 2πr2\pi r に、中心角 aa が 360 度に占める割合を掛けます。つまり、
l=2πr×a360l = 2\pi r \times \frac{a}{360}
* 面積 SS は、円の面積 πr2\pi r^2 に、中心角 aa が 360 度に占める割合を掛けます。つまり、
S=πr2×a360S = \pi r^2 \times \frac{a}{360}

3. 最終的な答え

l=2πr×a360l = 2\pi r \times \frac{a}{360}
S=πr2×a360S = \pi r^2 \times \frac{a}{360}

「幾何学」の関連問題

四面体OABCにおいて、$OA = 2\sqrt{5}$, $OB = OC = \sqrt{5}$, $BC = 2\sqrt{3}$, $AB = AC$, $\angle AOC = 120^\...

空間図形四面体余弦定理ベクトルの内積面積
2025/6/21

四面体OABCにおいて、$OA = 2\sqrt{5}$、$OB = OC = \sqrt{5}$、$BC = 2\sqrt{3}$、$AB = AC$、$\angle AOC = 120^\circ...

空間図形四面体余弦定理三平方の定理体積面積
2025/6/21

四面体 OABC において、OA = $2\sqrt{5}$, OB = OC = $\sqrt{5}$, BC = $2\sqrt{3}$, AB = AC, ∠AOC = 120°とし、BCの中点...

空間図形四面体余弦定理三角比ベクトル
2025/6/21

問題は2つの部分から構成されています。 (1) 正三角形を底面とする四面体OABCが球Sに内接している場合について、AHの長さと球Sの半径を求める。ここで、OA=OB=OC=2であり、三角形ABCの一...

四面体空間図形外接球余弦定理面積
2025/6/21

問題1は、1辺の長さが1の正三角形ABCを底面とする四面体OABCが球Sに内接しており、OA=OB=OC=2であるとき、線分AHの長さと球Sの半径を求める問題です。頂点Oから三角形ABCに下ろした垂線...

空間図形四面体外接球余弦定理三平方の定理面積
2025/6/21

問題1:一辺の長さが1の正三角形ABCを底面とする四面体OABCが球Sに内接している。OA=OB=OC=2とする。頂点Oから三角形ABCに下ろした垂線の足をHとするとき、線分AHの長さと球Sの半径を求...

四面体正三角形空間図形余弦定理体積面積
2025/6/21

2点A(2, 1), B(5, 2)に対して、$2AP = BP$を満たすx軸上の点Pの座標を求める問題です。

座標平面ベクトル距離方程式
2025/6/21

円の方程式 $x^2 + y^2 - 2y = 0$ を極方程式で表す問題です。

極座標方程式三角関数
2025/6/21

大きい正方形と小さい正方形を組み合わせた図形において、大きい正方形の一辺が55cm、小さい正方形の一辺が15cmであるとき、黒色に塗られている部分の面積を求める。

正方形面積図形
2025/6/21

右図のように、大きい正方形と小さい正方形が組み合わさっている。大きい正方形の一辺の長さは $55cm$ であり、小さい正方形の一辺の長さは $15cm$ である。黒色で塗られている部分の面積を求めよ。

正方形面積図形
2025/6/21